Category Archives: Quantum Physics
Quantum physics offers insights about leadership in the 21st century – The Conversation
It may seem strange to look to the discipline of quantum physics for lessons that will help to create future-fit leaders. But science has a lot to offer us.
Like scientists, business leaders need to be able to manage rapid change and ambiguity in a non-linear, multi-disciplinary and networked environment. But, for the most part, businesses find themselves trapped in processes that draw on the paradigm of certainty and predictability. This approach is analogous to the Newtonian physics developed in the 1600s.
The ambiguity that business leaders operate in is encapsulated in mathematical models developed by the advances in Quantum Physics developed in the early 1900s. These advances culminated in massive progression in technology. And they can accommodate the complexity and uncertainty archetypes found in nature and now by extension human behaviour.
These mathematical models allow for improved scenario and forecasting. They are therefore very useful in vastly improving decision-making, as pointed out by the author Adam C. Hall.
Throughout history, scholars have tried to make sense of human behaviour and, by extension, leadership attributes by studying natural phenomena.
According to complexity economist Brian Arthur and physicist Geoffrey West human social systems function optimally as complex adaptive systems or quantum systems.
The newly developed field of quantum leadership maps the human, conscious equivalents onto the 12 systems that define complex adaptive systems or quantum organisations. These are: self-awareness; vision and value led; spontaneity; holism; field-independence; humility; ability to reframe; asking fundamental questions; celebration of diversity; positive use of adversity; compassion; a sense of vocation (purpose).
Quantum leadership is essentially a new management approach that integrates the most effective attributes of traditional leadership with recent advances in both quantum physics and neuroscience. It is a model that allows for greater responsiveness. It draws on our innate ability to recognise, adapt and respond to uncertainty and complexity.
My academic work has been in nanophysics. This is an study where the laws of physics become governed by quantum physics as opposed to the rigid and deterministic Newtonian approach.
When entering the corporate world my interest was piqued on how leaders should respond to complexity, ambiguity and non-liniearity. This complimentarity extended my curiosity. In turn this led me to navigate several disciplines dealing with complex systems.
Quantum Mechanics has been confirmed by scientific evidence. The most popularly cited experiment was the Nobel winning theoretical development by Louis-Victor Pierre Raymond de Broglie explaining the wave-particle duality of light illustrated by the double slit experiment of Thomas Young. This showed that the outcome of any potential event is multi-fold and dependent on the vantage point of the observer.
This doesnt imply the correctness or incorrectness of any outcome. It just highlights how vantage point can and does influence behaviour and decision-making.
To come to grips with the vast change precipitated by the fourth industrial revolution businesses have to acknowledge that outcomes are vantage point dependent and random. This industrial revolution provides the potential to precipitate fundamental and positive changes in the way in which societies and work are organised.
Disruptive technologies such as mobile banking, practices such as remote working, and dramatic changes in consumer behaviour are inevitably rousing leadership from a linear mindset as they uncover non-linear opportunities.
The imperative of developing leaders that can deal with pervasive disruptions has being recognized by leading business schools. Examples include INSEADs programme in Executive Education. One course covers developing effective strategies and learning how to innovate in a disruptive, uncertain world.
The concept of a quantum leader is gaining traction in behavioural studies.
Quantum leaders, like the systems they have to manage, are poised at the edge of chaos. They thrive on the potential latent in uncertainty. They are also:
In this way, they are precipitating a radical break from the past.
Practically, quantum leadership is informed by quantum thinking and guided by the defining principles of quantum physics. Quantum leaders think ahead by formulating many scenarios for what the future might hold, encourage questions and experiments, and thrive on uncertainty.
Quantum leaders are guided by the same principles that inform complex adaptive systems. They can also operate effectively outside the direct control of formal systems. They have the ability to reframe challenges and issues within the context of the environment. And develop new approaches through relationships.
In short, they are curious, adaptable and tolerant of ambiguity and uncertainty.
The charismatic and forceful leader like the iconic Lee Iacocca led Chrysler to the company to great heights. Yet he failed to anticipate the dominance of Japanese automotive manufacturers. Lionised leaders who consult only as a matter of form but impose what they believed to be their superior way of thinking are the antithesis of what a quantum leaders represents.
The ingrained categorisation or divide between hard, such as Physics and soft, the Humanities in general sciences is self limiting. It creates unnecessary chasms between creativity and innovation. The quantum management paradigm recognises that analytics, design, creativity and human behaviour has to be integrated into the mindsets of future leaders.
The World Economic Forum estimates that digital transformation will transform a third of all jobs globally within the next decade. In addition billions of people will require reskilling. This trend will hit developing nations particularly hard. They have limited access to technology, remain locked into traditional teaching methods, and still practice top-down models of management.
In seeking solutions to this scenario, intellectuals across all disciplines need to come together to explore a more agile, multi-disciplinary approach to social and business management. Drawing on quantum theory concepts, we need to create a different way of looking at probability and possibility in the business world.
Business schools need to develop a new kind of business leader that can consider all possible outcomes. They need to be adaptable enough to function in a world in which outcomes may well be counter-intuitive. This is the way of the future.
Link:
Quantum physics offers insights about leadership in the 21st century - The Conversation
Warp drive experiment to turn atoms invisible could finally test Stephen Hawking’s most famous prediction – Livescience.com
A new warp speed experiment could finally offer an indirect test of famed physicist Stephen Hawking's most famous prediction about black holes.
The new proposal suggests that, by nudging an atom to become invisible, scientists could catch a glimpse of the ethereal quantum glow that envelops objects traveling at close to the speed of light.
The glow effect, called the Unruh (or Fulling-Davies-Unruh) effect, causes the space around rapidly accelerating objects to seemingly be filled by a swarm of virtual particles, bathing those objects in a warm glow. As the effect is closely related to the Hawking effect in which virtual particles known as Hawking radiation spontaneously pop up at the edges of black holes scientists have long been eager to spot one as a hint of the others existence.
Related: 'X particle' from the dawn of time detected inside the Large Hadron Collider
But spotting either effect is incredibly hard. Hawking radiation only occurs around the terrifying precipice of a black hole, and achieving the acceleration needed for the Unruh effect would probably need a warp drive. Now, a groundbreaking new proposal, published in an April 26 study in the journal Physical Review Letters, could change that. Its authors say they have uncovered a mechanism to dramatically boost the strength of the Unruh effect through a technique that can effectively turn matter invisible.
"Now at least we know there is a chance in our lifetimes where we might actually see this effect," co-author Vivishek Sudhir, an assistant professor of mechanical engineering at MIT and a designer of the new experiment, said in a statement. "Its a hard experiment, and theres no guarantee that wed be able to do it, but this idea is our nearest hope."
First proposed by scientists in the 1970s, the Unruh effect is one of many predictions to come out of quantum field theory. According to this theory, there is no such thing as an empty vacuum. In fact, any pocket of space is crammed with endless quantum-scale vibrations that, if given sufficient energy, can spontaneously erupt into particle-antiparticle pairs that almost immediately annihilate each other. And any particle be it matter or light is simply a localized excitation of this quantum field.
In 1974, Stephen Hawking predicted that the extreme gravitational force felt at the edges of black holes their event horizons would also create virtual particles.
Gravity, according to Einsteins theory of general relativity, distorts space-time, so that quantum fields get more warped the closer they get to the immense gravitational tug of a black holes singularity. Because of the uncertainty and weirdness of quantum mechanics, this warps the quantum field, creating uneven pockets of differently moving time and subsequent spikes of energy across the field. It is these energy mismatches that make virtual particles emerge from what appears to be nothing at the fringes of black holes.
"Black holes are believed to be not entirely black," lead author Barbara oda, a doctoral student in physics at the University of Waterloo in Canada, said in a statement. "Instead, as Stephen Hawking discovered, black holes should emit radiation."
Much like the Hawking effect, the Unruh effect also creates virtual particles through the weird melding of quantum mechanics and the relativistic effects predicted by Einstein. But this time, instead of the distortions being caused by black holes and the theory of general relativity, they come from near light-speeds and special relativity, which dictates that time runs slower the closer an object gets to the speed of light.
According to quantum theory, a stationary atom can only increase its energy by waiting for a real photon to excite one of its electrons. To an accelerating atom, however, fluctuations in the quantum field can add up to look like real photons. From an accelerating atoms perspective, it will be moving through a crowd of warm light particles, all of which heat it up. This heat would be a telltale sign of the Unruh effect.
But the accelerations required to produce the effect are far beyond the power of any existing particle accelerator. An atom would need to accelerate to the speed of light in less than a millionth of a second experiencing a g force of a quadrillion meters per second squared to produce a glow hot enough for current detectors to spot.
"To see this effect in a short amount of time, youd have to have some incredible acceleration," Sudhir said. "If you instead had some reasonable acceleration, youd have to wait a ginormous amount of time longer than the age of the universe to see a measurable effect."
To make the effect realizable, the researchers proposed an ingenious alternative. Quantum fluctuations are made denser by photons, which means that an atom made to move through a vacuum while being hit by light from a high-intensity laser could, in theory, produce the Unruh effect, even at fairly small accelerations. The problem, however, is that the atom could also interact with the laser light, absorbing it to raise the atom's energy level, producing heat that would drown out the heat generated by the Unruh effect.
But the researchers found yet another workaround: a technique they call acceleration-induced transparency. If the atom is forced to follow a very specific path through a field of photons, the atom will not be able to "see" the photons of a certain frequency, making them essentially invisible to the atom. So by daisy-chaining all these workarounds, the team would then be able to test for the Unruh effect at this specific frequency of light.
Making that plan a reality will be a tough task. The scientists plan to build a lab-size particle accelerator that will accelerate an electron to light speeds while hitting it with a microwave beam. If theyre able to detect the effect, they plan to conduct experiments with it, especially those that will enable them to explore the possible connections between Einstein's theory of relativity and quantum mechanics.
"The theory of general relativity and the theory of quantum mechanics are currently still somewhat at odds, but there has to be a unifying theory that describes how things function in the universe," co-author Achim Kempf, a professor of applied mathematics at the University of Waterloo, said in a statement. "We've been looking for a way to unite these two big theories, and this work is helping to move us closer by opening up opportunities for testing new theories against experiments."
Originally published on Live Science.
Visit link:
Physicists Trace the Rise in Entropy to Quantum Information – Quanta Magazine
Classical thermodynamics has only a handful of laws, of which the most fundamental are the first and second. The first says that energy is always conserved; the second law says that heat always flows from hot to cold. More commonly this is expressed in terms of entropy, which must increase overall in any process of change. Entropy is loosely equated with disorder, but the Austrian physicist Ludwig Boltzmann formulated it more rigorously as a quantity related to the total number of microstates a system has: how many equivalent ways its particles can be arranged.
The second law appears to show why change happens in the first place. At the level of individual particles, the classical laws of motion can be reversed in time. But the second law implies that change must happen in a way that increases entropy. This directionality is widely considered to impose an arrow of time. In this view, time seems to flow from past to future because the universe began for reasons not fully understood or agreed on in a low-entropy state and is heading toward one of ever higher entropy. The implication is that eventually heat will be spread completely uniformly and there will be no driving force for further change a depressing prospect that scientists of the mid-19th century called the heat death of the universe.
Boltzmanns microscopic description of entropy seems to explain this directionality. Many-particle systems that are more disordered and have higher entropy vastly outnumber ordered, lower-entropy states, so molecular interactions are much more likely to end up producing them. The second law seems then to be just about statistics: Its a law of large numbers. In this view, theres no fundamental reason why entropy cant decrease why, for example, all the air molecules in your room cant congregate by chance in one corner. Its just extremely unlikely.
Yet this probabilistic statistical physics leaves some questions hanging. It directs us toward the most probable microstates in a whole ensemble of possible states and forces us to be content with taking averages across that ensemble.
But the laws of classical physics are deterministic they allow only a single outcome for any starting point. Where, then, can that hypothetical ensemble of states enter the picture at all, if only one outcome is ever possible?
David Deutsch, a physicist at Oxford, has for several years been seeking to avoid this dilemma by developing a theory of (as he puts it) a world in which probability and randomness are totally absent from physical processes. His project, on which Marletto is now collaborating, is called constructor theory. It aims to establish not just which processes probably can and cant happen, but which are possible and which are forbidden outright.
Constructor theory aims to express all of physics in terms of statements about possible and impossible transformations. It echoes the way thermodynamics itself began, in that it considers change in the world as something produced by machines (constructors) that work in a cyclic fashion, following a pattern like that of the famous Carnot cycle, proposed in the 19th century to describe how engines perform work. The constructor is rather like a catalyst, facilitating a process and being returned to its original state at the end.
Say you have a transformation like building a house out of bricks, said Marletto. You can think of a number of different machines that can achieve this, to different accuracies. All of these machines are constructors, working in a cycle they return to their original state when the house is built.
But just because a machine for conducting a certain task might exist, that doesnt mean it can also undo the task. A machine for building a house might not be capable of dismantling it. This makes the operation of the constructor different from the operation of the dynamical laws of motion describing the movements of the bricks, which are reversible.
The reason for the irreversibility, said Marletto, is that for most complex tasks, a constructor is geared to a given environment. It requires some specific information from the environment relevant to completing that task. But the reverse task will begin with a different environment, so the same constructor wont necessarily work. The machine is specific to the environment it is working on, she said.
Recently, Marletto, working with the quantum theorist Vlatko Vedral at Oxford and colleagues in Italy, showed that constructor theory does identify processes that are irreversible in this sense even though everything happens according to quantum mechanical laws that are themselves perfectly reversible. We show that there are some transformations for which you can find a constructor for one direction but not the other, she said.
The researchers considered a transformation involving the states of quantum bits (qubits), which can exist in one of two states or in a combination, or superposition, of both. In their model, a single qubit B may be transformed from some initial, perfectly known state B1 to a target state B2 when it interacts with other qubits by moving past a row of them one qubit at a time. This interaction entangles the qubits: Their properties become interdependent, so that you cant fully characterize one of the qubits unless you look at all the others too.
As the number of qubits in the row gets very large, it becomes possible to bring B into state B2 as accurately as you like, said Marletto. The process of sequential interactions of B with the row of qubits constitutes a constructor-like machine that transforms B1 to B2. In principle you can also undo the process, turning B2 back to B1, by sending B back along the row.
But what if, having done the transformation once, you try to reuse the array of qubits for the same process with a fresh B? Marletto and colleagues showed that if the number of qubits in the row is not very large and you use the same row repeatedly, the array becomes less and less able to produce the transformation from B1 to B2. But crucially, the theory also predicts that the row becomes even less able to do the reverse transformation from B2 to B1. The researchers have confirmed this prediction experimentally using photons for B and a fiber optic circuit to simulate a row of three qubits.
You can approximate the constructor arbitrarily well in one direction but not the other, Marletto said. Theres an asymmetry to the transformation, just like the one imposed by the second law. This is because the transformation takes the system from a so-called pure quantum state (B1) to a mixed one (B2, which is entangled with the row). A pure state is one for which we know all there is to be known about it. But when two objects are entangled, you cant fully specify one of them without knowing everything about the other too. The fact is that its easier to go from a pure quantum state to a mixed state than vice versa because the information in the pure state gets spread out by entanglement and is hard to recover. Its comparable to trying to re-form a droplet of ink once it has dispersed in water, a process in which the irreversibility is imposed by the second law.
So here the irreversibility is just a consequence of the way the system dynamically evolves, said Marletto. Theres no statistical aspect to it. Irreversibility is not just the most probable outcome but the inevitable one, governed by the quantum interactions of the components. Our conjecture, said Marletto, is that thermodynamic irreversibility might stem from this.
Theres another way of thinking about the second law, though, that was first devised by James Clerk Maxwell, the Scottish scientist who pioneered the statistical view of thermodynamics along with Boltzmann. Without quite realizing it, Maxwell connected the thermodynamic law to the issue of information.
Maxwell was troubled by the theological implications of a cosmic heat death and of an inexorable rule of change that seemed to undermine free will. So in 1867 he sought a way to pick a hole in the second law. In his hypothetical scenario, a microscopic being (later, to his annoyance, called a demon) turns useless heat back into a resource for doing work. Maxwell had previously shown that in a gas at thermal equilibrium there is a distribution of molecular energies. Some molecules are hotter than others they are moving faster and have more energy. But they are all mixed at random so there appears to be no way to make use of those differences.
Enter Maxwells demon. It divides the compartment of gas in two, then installs a frictionless trapdoor between them. The demon lets the hot molecules moving about the compartments pass through the trapdoor in one direction but not the other. Eventually the demon has a hot gas on one side and a cooler one on the other, and it can exploit the temperature gradient to drive some machine.
The demon has used information about the motions of molecules to apparently undermine the second law. Information is thus a resource that, just like a barrel of oil, can be used to do work. But as this information is hidden from us at the macroscopic scale, we cant exploit it. Its this ignorance of the microstates that compels classical thermodynamics to speak of averages and ensembles.
Almost a century later, physicists proved that Maxwells demon doesnt subvert the second law in the long term, because the information it gathers must be stored somewhere, and any finite memory must eventually be wiped to make room for more. In 1961 the physicist Rolf Landauer showed that this erasure of information can never be accomplished without dissipating some minimal amount of heat, thus raising the entropy of the surroundings. So the second law is only postponed, not broken.
The informational perspective on the second law is now being recast as a quantum problem. Thats partly because of the perception that quantum mechanics is a more fundamental description Maxwells demon treats the gas particles as classical billiard balls, essentially. But it also reflects the burgeoning interest in quantum information theory itself. We can do things with information using quantum principles that we cant do classically. In particular, entanglement of particles enables information about them to be spread around and manipulated in nonclassical ways.
Read the rest here:
Physicists Trace the Rise in Entropy to Quantum Information - Quanta Magazine
Nanotech Coating Inspired by Black Holes Can Keep Cars Cooler Without AC – The Drive
Saving energy via environmental conditioning in cars is extremely important. Running the air conditioning or heater is inefficient, and in EVs, it's an even bigger factor in terms of energy loss. It's why automakers are using heat pumps as range extenders on battery-electric vehicles to retain said energy for propulsion. Now, a very cool (literally) bit of quantum physics means a film coating on the dash and roof of a car could work similar to a black hole, and replace air conditioning by using the energy from sunlight to cool things down.
If that sounds impossible then allow me to explain: an Israeli startup called SolCold has managed to find a way to use anti-Stokes fluorescence, which is a phenomenon where (under some very specific circumstances) photons can react with a surface that makes them leave with more energy than they encountered it with. So basically it beams the energy from sunlight back stronger, turning energy loss into a cooling process.
The thing is, anti-Stokes fluorescence isn't very easy to make happen. It's one of those laboratory and space tech things that doesn't really get out into the wild because it requires some very specific conditions. Needless to say, I was pretty amazed to see that SolCold had manufactured a film coating that produces the phenomenon and can be laid onto the roof and dash of a regular old VW hatchback, as the video below shows.
If you don't want to get into the physics bit then here's all you need to know: when the film coating was put on the VW Polo, in a partnership with Volkswagen's Konnekt research, SolCold took the specially coated car and two control vehicles out into the Israeli desert. In full sunlight, the coating achieved a cooling effect between 53.6 and 57.2 Fahrenheit, compared to the uncoated car.
Amazingly, the coating kept the car sitting in direct sun cooler than the car placed in the shade; that's a very real, very rad cooling effect that could transform the need to have the aircon blasting when you're driving down a highway on a hot day. SolCold told me that depending on the size of the car's cabin, it could reduce the temperature inside by as much as 20 to 70 percent.
Alright, for the nerds still with me let's get excited about this. The film coating is already in a prototype phase and SolCold told me that it can head for production later this fall. Of course, SolCold couldn't tell me what they're using to make the film but they did confirm it has no hazardous stuff and no rare earth materials, which is a win in these metal-and-mineral-strapped times.
Developing the film took three years of lab research and this is just the first generation, reaching roughly 100W of cooling per 3.3 square feet. SolCold told me the idea is to make a more effective film as well as develop it into different products, like a yarn that could be used to make fabrics. Imagine getting into your car after it's been sitting in a sunny lot and not immediately burning your butt off.
The really cool bit is that the SolCold film partially does what it does with technology from black holes. A "perfectly black body," in physics terms, is something that absorbs so much of the energy around it that it works a little bit like a tiny black hole. SolCold's film uses three layers of smart filtration, black body emissivity, and the anti-Stokes conversion layer, working on different wavelengths to do what it does.
And no, just because it's talking about fluorescence doesn't mean it's going to reflect stuff back in your eyes. Each photon hits a different nanostructure and then flies off again in any direction, so the energy is diffused without any dazzling.
Volkswagen has already committed to using the SolCold film in a concept car and with production so close this could be something in production cars really soon, though probably in limited quantities at first.
Got some cool edge-of-physics stuff that relates to cars? Definitely tell me about it: hazel@thedrive.com
View post:
Nanotech Coating Inspired by Black Holes Can Keep Cars Cooler Without AC - The Drive
Democracy is in danger as Boris Johnson rips up the rulebook – The Guardian
Jacinda Ardern is right to draw attention to the fragile nature of democracy (New Zealand PM addresses Harvard on gun control and democracy, 27 May). In rewriting the ministerial code, Boris Johnson is making a blatant attempt to save his own neck (Boris Johnson accused of changing ministerial code to save his skin, 27 May). How long before he changes other cornerstones of British democracy? Why bother with the scrutiny of select committees? Why go through the difficult and expensive process of election? Why not appoint a prime minister for life?
Johnson is as grubby a man who ever set foot in politics, but the electorate need to look at the equally grubby band of sycophantic enablers who keep him in post. If we stand by as Johnson and his cronies stealthily undermine our democracy, future generations may find themselves negotiating a very different political landscape: one that cannot be easily overthrown.Lynne CopleyHuddersfield, West Yorkshire
The shenanigans in Downing Street, and the apparent absolution of the chief political protagonist after police inquiries (barring one fixed-penalty notice), seemed to me to be reminiscent of Bullingdon Club behaviour. Rich kids get drunk, trash the place, abuse the servants, ignore the laws that are for the little people and are let off by a spineless police service after heavy action by expensive lawyers.
That seemed bad enough, but now it seems that Boris Johnson has decided to use his power to protect himself by changing the ministerial code. So much for our unwritten constitution, British values and the rule of law. I am incandescent with rage at this shamelessness.Anne CarslawGlasgow
So much of the UK constitution, based in convention as much as law, is reliant on the integrity of its government. It follows that a rogue prime minister, lacking integrity and with a servile majority in the Commons, can alter this uncodified constitution to his own advantage, more or less at will. This government has a long track record of changing, and attempting to change, both convention and law, of which the alterations to the ministerial code of conduct are but the most recent example. It is what makes this government so dangerous. It is accentuating the trend to an unaccountable elective dictatorship. We should not be complacent about the weaknesses of our much-lauded democracy.Roy BoffySutton Coldfield, West Midlands
Marina Hyde likens the cabinets Partygate comments to quantum physics (No drive, no spine, very little vision: even science cant explain the creatures clinging on to Johnson, 27 May), but it is equally Marxist. Groucho, when chairing a meeting in the film Duck Soup, does not allow a point to be raised because the current agenda item is old business. He immediately moves on to new business, but disallows the previous point again because thats old business already.Joe LockerSurbiton, London
Marina Hyde could have found a word in another science, biology, to account for Boris Johnson and the weird creatures who cling to him: atavism. An atavism is a characteristic thought to have disappeared from the genome of a species many generations in the past, only to suddenly reappear usually to the detriment of the species as a whole.Pauline CaldwellDerby
Have an opinion on anything youve read in the Guardian today? Please email us your letter and it will be considered for publication.
Go here to see the original:
Democracy is in danger as Boris Johnson rips up the rulebook - The Guardian
A Quantum Leap in the Making Meet Tomorrow’s Super Super Computers – TechNative
Modern computers are incredibly versatile, but even the most potent ones struggle with certain types of calculations and modelling
Now, imagine an entirely different kind of computer, with head-spinning power, using mind-bending quantum mechanics to bring barely believable capabilities to life. A super super computer that can tackle calculations that the most powerful conventional machines would need decades to process in a split second. This contraption which resembles a baroque chandelier that could have hung at Versailles is a quantum computer.
They probably wont replace todays computers dont expect your next laptop to be a quantum device but they will be able to tackle certain boxed and highly complex tasks that force traditional computers to throw in the towel. If there are near-endless possible answers to a clearly defined problem, a quantum computer will find the solution much quicker than any conventional computer.
Quantum computers are powered by qubits (i.e., quantum bits), which, due to the strange properties of quantum mechanics, can exist in something called superposition, which in simplified terms means they exist in both 0 and 1 states simultaneously. Imagine flipping a coin. Itll eventually land on either heads or tails. But if you spin it, you could say that before it settles it is both heads and tails at the same time or, rather, there is a possibility that it can be either of the two. It is in superposition. In order to operate at scale, qubits need to be entangled wired together in superposition. Quantum entanglement, explains IBM, allows qubits, which behave randomly, to be perfectly correlated with each other.
Alas, superposition is fickle, and when decoherence forces a qubit out of superposition, it no longer possesses quantum properties. The solution is called error correction, and quantum computing pioneers like IBM, Microsoft and Google are hard at work making it happen.
For a more comprehensive explanation of quantum computing, check out this primer. And dont miss this irresistible video featuring IBM scientist Talia Gershon explaining quantum computers to five individuals from an eight-year-old to a theoretical physicist from Yale.
Possibilities for quantum use cases include predictive analytics and advanced modeling, which could help streamline and optimize large-scale transit operations and fleet maintenance, energy exploration, disaster prevention and recovery, as well as climate change mitigation. Also on the radar: chemistry simulations of molecules and atoms whose complex behavior is driven by quantum mechanics and simply too hard to handle for conventional machines.Meanwhile, automakers, including Volkswagen, are investigating quantum computing in search of improved battery chemistry for electric vehicles.
In oil refining, massively big machines, called hydrocrackers, are used to upgrade low-quality heavy gas oils into high-quality, clean-burning jet fuel, diesel and gasoline. Extremely complicated and costly to maintain, hydrocrackers may sit idle several months each year, but implementing a predictive modeling application has enabled hydrocracker operators to shave off months of downtime for these behemoths. The idea: Make all acute repairs when the machine is down and use technology to predict what might break next and fix it preemptively. Adding quantum-driven AI as the brain for the hydrocracker could further minimize downtime because the quantum computer could calculate exponentially more scenarios than current technology.
In another example of the immense potential of the technology, bright minds from the University of Glasgows School of Physics & Astronomy recently announced that they have adapted a quantum algorithm called Grovers algorithm to drastically cut down the time it takes to identify and analyze gravitational wave signals.
One of the most interesting use cases is artificial intelligence. Indeed, adding quantum power to AI could be what takes present-day Narrow AI to the next level General AI. The quantum-AI hydrocracker brain described above is a possible example of General AI. Quantum computing could also propel machines toward sentience within specific fields. Imagine computers perfectly empathizing and emulating emotions, with the ability to respond to complex signals, like expressions, eye movement and body language. Perhaps one day, quantum computing could drive us all the way to that barely fathomable third level of AI Super AI where machines outperform humans in every way.
Todays quantum machines are scientific marvels, and they are evolving rapidly. By [2025], IBM says, we envision that developers across all levels of the quantum computing stack will rely upon our advanced hardware with a cloud-based API. The hope is that by 2030, companies and users are running billions, if not a trillion quantum circuits a day. Big Blue, whose most powerful machine currently packs 126 qubits, expects to have an 1121-qubit version in 2023.
Quantum computing is fascinating, promising and just cool. Still, we may need to slow the hype machine down a tad as significant challenges must be overcome before the technology can be commercialized. Functional, stable, production-scale quantum machines could be up to a decade away. But once they materialize, we can start writing software for the quantum stack and begin to realize all these tantalizing quantum computing use cases.
About the Author
Wolf Ruzicka is Chairman atEastBanc Technologies.Wolf is a technology industry veteran with more than 25 years of experience leading enterprise business strategy and innovation. He joined EastBanc Technologies in 2007, originally as CEO. During his tenure, Wolf also served as President of APIphany, a division of EastBanc Technologies, through its acquisition by Microsoft. Wolfs vision and customer-centric approach to digital transformation is credited for helping establish EastBanc Technologies as a leader delivering sophisticated solutions that enable customers to win in todays digital economy. Follow Wolf on LinkedIn.
Read this article:
A Quantum Leap in the Making Meet Tomorrow's Super Super Computers - TechNative
‘Physicists Have Always Been Philosophers’: In Conversation With Frank Wilczek – The MIT Press Reader
The Nobel Prize-winning physicist discusses free will, time travel, and the relationship between innovation and scientific discovery.
Todays scientific landscape teems with conversations and interactions between scientists and humanists. The cutting edge of new knowledge is the product of collaboration across traditional disciplinary boundaries; it emerges, I believe, from places where researchers from diverse backgrounds come together to solve concrete problems.
This is the premise that sparked the idea for my book Is the Universe a Hologram? Scientists Answer the Most Provocative Questions, which comprises a series of interconnected dialogues with leading scientists who are asked to reflect on key questions and concepts about the physical world, technology, and the mind. These thinkers offer both specific observations and broader comments about the intellectual traditions that inform these questions; in doing so, they reveal a rich seam of interacting ideas.
When the book went to press a few years ago, I hadnt yet had a chance to sit down with Frank Wilczek, the Nobel Prize-winning physicist whose work Ive long admired. Our conversation which took place in 2020 during his visit to the city of Valencia, Spain, as a member of the jury of the prestigious Rei Jaume I Awards made its way into the recently published Spanish edition of the book titled De neuronas a galaxias (From neurons to galaxies). Im so pleased to share our discussion, translated and edited for length, below.
Adolfo Plasencia: Professor Wilczek, lets jump right into a difficult but, I think, fascinating subject. In my dialogue with the physicist Ignacio Cirac, a pioneer in the field of quantum computing, he said that quantum physics in a way takes into account free will. Its a bold statement, and Ive been eager to get your take on it. Do you agree with Cirac?
Frank Wilczek: I think the question can be understood in two different ways. So let me answer each of them separately.
The first interpretation is to ask whether quantum mechanics explains the phenomenon of free will, or whether there is something else that must be taken into account in our description of the world which is not within the scope of quantum mechanics or which is not within physics as we understand it. And the answer is that we dont really know for sure. But there seems to be a very good hypothesis that I think scientists are in fact adopting, and it is that the phenomena of mental life, including free will, can be derived from the physical embodiment of mind in matter. So what we call emergent phenomena are qualitatively different behaviors that can be very difficult to see in the basic laws but can emerge in large systems with many components that have a rich structure. So, for example, when neurobiologists study the nervous system, when they study the brain, they adopt the working hypothesis that thought, memory all mental phenomena have a physical basis, have a physical correlate.
Another aspect is that you can ask yourself if, when we do physical experiments, we have to add something else that is mental. Do we have to make corrections for what people are thinking? Physicists now do very refined, precise, delicate experiments in which corrections have to be made for all sorts of things. You have to make corrections for trucks that pass by, you have to make corrections for electric and magnetic fields, you have to control the temperature very precisely, and so on, but something that people have never needed before is to make corrections related to what people are thinking. So I think there is very good circumstantial evidence that the world, the physical world, is not influenced by a separate mental world.
I believe that the barriers that physicists are encountering are not barriers of principle, but barriers of technique.
The second interpretation of the question is whether in the formulation of quantum mechanics one should involve the observer as a separate object that has free will, that decides what to observe. Quantum mechanics has an unusual mechanism since the theory has equations, and to interpret the equations one must make an observation. I believe that, eventually, in order to understand the phenomena of free will on a physical basis, and thus fully understand quantum mechanics, we will need to understand that we have that model of consciousness that corresponds to our experience of everyday life, which is fully based on quantum mechanics. At present, I dont think we have that. However, I believe that the barriers that physicists are encountering are not barriers of principle, but barriers of technique.
We are not advanced enough in quantum mechanics to make models where we can identify something wed begin to recognize as consciousness. Thats a big challenge for the future. But we have every reason to believe that this challenge can one day be met. So what we need is a model thats fully quantum mechanical and contains complicated objects that you can point to and say, thats behaving like a conscious mind and that thing is something I can recognize as a thinking entity. Part of the trouble, of course, is that the definition of consciousness is very slippery.
AP: Your response reminds me of something someone quipped to me after seeing the table of contents of my book and reading the discussion with Cirac: So physicists are now getting into philosophy too?
FW: Physicists have always been philosophers. In fact, historically, the beginnings of philosophy and of natural science, in ancient Greece, involved the same set of people. People like Pythagoras and Thales and Plato did not consider themselves philosophers or physicists, they were both. They developed the main issues of both disciplines, somehow, together, from the very beginning. Now, in recent years physics has become much more sophisticated and has become separated from academic philosophy, which is a discipline in itself, has its own techniques and body of academic literature, and so forth.
However, I dont think physicists should give up the enterprise of attempting to understand the world fully. They have made many advances in understanding the physical world, with precision, accuracy, and great depth, and I dont think this disqualifies them from addressing the classic questions of philosophy. On the contrary, I think that empowers them so that they can bring in new kinds of insights into what have become the traditional philosophical questions.
And I think many physicists have not wanted to do that, either because they are busy with physics or because they dont dare, but I think it is perfectly appropriate for physicists to also be philosophers. In fact, I think they should be, because many of the ideas weve learned about the physical world in physics are very surprising things that you wouldnt guess from everyday experience so I think we have things to teach philosophers. Especially since quantum mechanics is really a vast expansion of what we mean by reality, and it requires adjusting how you think. If you want to be a serious student of reality or of mind you really should know quantum mechanics. To me, a philosopher who doesnt know quantum mechanics is like a swimmer with his or her hands tied behind their back.
To me, a philosopher who doesnt know quantum mechanics is like a swimmer with his or her hands tied behind their back.
AP: Lets move into what Ill call the weird ideas questions stuff Ive been wondering about, as a non-scientist, coming from a position of great ignorance but with deep curiosity. If theres any known symbol or idea about quantum physics that for ordinary people clashes with everyday logic, thats the subject of Schrdingers cat. Dont you think its difficult to explain to people that, not knowing if the cat is dead or alive, when you try to find out, you come to the conclusion that the cat is both dead and alive at the same time? That is something rather strange, counterintuitive, even to university students who study the subject.
FW: There are many situations when you describe them by probability that you dont know before you observe what you will observe. That, almost by definition, is what probability means. You dont know what you can find when you look into it, when you make the observation, when you pick from a sample, or whatever, but the quantum mechanical situation is a little bit different. What makes it paradoxical is that there is a very real sense in which the cats alive state and dead state possibilities coexist in a way that is not true in classical situations. Now, this coexistence is not a practical situation for cats, but we can talk about a similar situation for atoms, and it does become practical for atoms. But, in the spirit of your question, let me go back to talking about cats.
In principle lets assume that after some time T, the probability of having a cat alive or the probability of having a cat dead, according to quantum mechanics, is predicted to be 50/50, so each of them is equally likely. We have that situation, and we can check it and experiment, so we have a lot of cats, and we can do the same experiment over and over again. But quantum mechanics tells you that if you do certain operations after that time T you can reverse the situation so that the cat will be certainly alive or that the cat will be certainly dead and both of those possibilities were present and you could restore them by doing different things to the initial situation, to the initial wave function.
So what is different about quantum mechanics, is that those two possibilities are not mutually exclusive, they both coexist in the situation and what happens when you observe is you find out whats called collapse of the wave function. You fix one possibility, but before you made the observation, before you intervened in the situation, both were present. And if you dont intervene, but let the systems stay close, dont observe it, manipulate it with some fields, never looking in to know if the cat is alive or dead, you can reverse the evolution and make it totally alive or you can make it totally dead. For real cats this is not practical at all, but it is for atoms If you are not talking about a live cat or a dead cat but about the spin of an atom, pointing up or down, you can literally do these things you can create a situation where there is a 50/50 percent chance that the spin is up or the spin is down, but then, by operating on that wave function, without observing, just operating on it, you can show that either possibility was really present.
AP: So you believe that quantum superposition is part of human logic
FW: Oh, yes! Well, some human beings do physics and quantum mechanics pretty successfully. You know, I do quantum mechanics sometimes and I make mistakes occasionally, but Ive always been able to correct them. There is no real doubt about how you apply quantum mechanics to physical situations; there are right and wrong answers. It can be hard to think about there are sometimes very counterintuitive aspects of quantum mechanics. You have to sort of take yourself outside the realm of common sense and think about some things differently, because if you did apply common sense you would get the wrong answer. Sometimes, it is only necessary to follow the equations. But you know, there are many people who practice quantum mechanics very successfully and use it in design of computers and all kinds of other strange gadgets, use it to do very many concrete things. It is certainly not beyond human comprehension.
You have to sort of take yourself outside the realm of common sense and think about some things differently, because if you did apply common sense you would get the wrong answer.
AP: All right, lets move on to the next issue: time travel. An article you published in Quanta magazine some time ago digs into the concept of the arrow of time, which was coined by Arthur Eddington almost 100 years ago but remains an unsolved problem of modern physics. This idea postulates the one-way direction or asymmetry of time. Let me just ask you directly: Why does time travel only work in science fiction, and therefore in the imagination, and not in our everyday reality?
FW: Well, this is a very complex question. Not only in content but also in formulation. So, let me try to boil your question down to essentials. One aspect is, what do physicists mean when they talk about a universal symmetry? Since you cant actually reverse [in the reality in which we live] the direction of time it sounds like metaphysics to say: Okay, if we reverse the direction of time, such and such and such will happen.
But, actually, it means something very concrete. It means if you have a physical situation where particles are moving with certain velocities, so at some initial moment you know where they are and what direction they are moving these are based on certain equations you can also discuss the situation where you struck with particles in the same space but moving in the opposite direction. So that if you change (in the equations) the direction of time, they would be moving in the opposite direction instead. You can see whether those two situations are governed by exactly the same equations.
Time reversal symmetry simply says that if you reverse the directions of rotation and the speeds of everything in your system, you will see that it is based on the same equations as if you did not. So that is what time reversal means very concretely for physicists. There are many details that are more complicated, that have to do with the spin and have to do with exotic kinds of particles. But thats the idea. And, we find in physics that that principle works very, very accurately. Not perfectly but very, very accurately. But in everyday life it doesnt seem that way. It doesnt seem that the direction of time forwards and backwards is experienced in the same way in our lives. Of course, it definitively isnt.
So, how is that consistent with the experiment I mentioned? Well, first of all, we cannot, as a practical matter, in any complicated system, let alone a human body, change the direction that every particle is moving. So you cant really do it, in practice. You cant get the direct consequence of the underlying time-reversal symmetry. The past and the future are very different and there is a long story about why that is, even though the basic equations look the same forwards and backwards. And I dont think its appropriate to get into that whole story now, but let me say something. The essence of it is that, in the beginning, at the very early stage of the universe, the universe was much hotter and denser and was expanding. That was the Big Bang. And the Big Bang was in the past, not in the future. So that tells you that things were very different in the past and that we are heading toward a future that is very different from the origin (of the universe). And by a long series of arguments about the formation of structure and the universe cooling down and so on, you can sketch a history of the universe that makes sense and accords with our experience of time going in only one direction, although in the fundamental equations, we would have the same behavior if it moved in the opposite direction.
AP: Whew, all right. Sci-fi writers beware
FW: I mean, it is a very intriguing possibility in principle that of reversing the direction of the motion of particles and getting them to reverse their evolution in time so that they reconstitute their state at an earlier time. Maybe if we did that for some key molecules, to reverse aging, for example. But in practice, we dont know what, if any, key elements we need to reverse, and so, the time-reversal symmetry of the fundamental laws does not help us in anything that is very practical for us.
AP: Finally, I want to ask you about something important to me, but not explicitly related to physics. I write and publish a lot about innovation, which has been a buzzword for decades and seems to still be. Everyone these days, from entrepreneurs to politicians, has to innovate. How do you view this term, its notion, and its meaning today, from your point of view as a scientist, but also just as a citizen? What differences do you see between the concepts of discovery, invention, and innovation in the world we live in now?
FW: I think we live in a very special time now, because of the means of communication and the aids to thinking that we have electronics and microelectronics and computer technology and telecommunication. With all these things, people can exchange ideas much more efficiently. People can get together and think. And on the other hand, there is more to think about because the technology is very powerful and we understand matter very, very well. So we can design things based on imagination and planning and be sure that they work or at least be pretty confident that they will work. So thats innovation kind of exploding our knowledge of the world in order to make improvements here and there. And, to me, as a physicist, I am very proud that so much innovation has emerged from a profound understanding of the physical world and reality, that was provided originally by people who were just curious about how the physical world works, and in particular, the quantum world that we were talking about.
All microelectronics, transistors, semiconductors, etc. wouldnt exist without a profound understanding of matter that physics produced during the 20th century. And this isnt over yet. We understand, but we have not exhausted the potential thats been opened up by this profound understanding of the world. In fact, the theory itself tells us that there is much more room for improvement. Richard Feynman, one of my heroes, gave a famous talk in 1959 called Theres plenty of room in the bottom, which anticipated the richness of the micro-world: There are many, many, many atoms in even small things. And if you can work skillfully with them, you can do little machines, you can do useful things, in medicine, and in computing, of course. In principle, he foresaw this would open up various possibilities in many directions; of course he couldnt predict the details but he pointed in that direction. And now we see them embodied in microelectronics, nanotechnology, and modern telecommunications. All these things come from understanding this microcosmic world really well, in great detail and depth. A recent Nobel Prize in Chemistry was awarded for building molecules that function as motors and understanding how to do that. So, in many ways, this fundamental science is opening up new possibilities for innovation.
Now, you asked me about the relationship between innovation and scientific discovery. I think they kind of shade into each other. But basically science, curiosity-driven basic science is more long-term. It doesnt focus on goals that you know how to reach, and you just want to reach them quickly or efficiently. It takes us into unknown territory, where we dont know what were doing or why were doing it. But that kind of thing provides new possibilities for innovation later. So I would say that scientific research is continuous with innovation, it is a long-term curiosity-driven enterprise. While short-term innovation harvests the fruit of discovery.
Adolfo Plasencia is a writer and columnist who covers science and technology, and the author of Is the Universe a Hologram? Scientists Answer the Most Provocative Questions.
The rest is here:
Chien-Shiung Wus work defied the laws of physics – Popular Science
The annals of science journalism werent always as inclusive as they could have been. SoPopSciis working to correct the record withIn Hindsight, a series profiling some of the figures whose contributions we missed. Read their stories and explore the rest of our 150th anniversary coveragehere.
In quantum physics, theres a law known as the conservation of parity, which is based on the notion that nature adheres to the ideal of symmetry. In a mirror-image of our world, it posits, the laws of physics would function the same waydespite everything being flipped. Since the early 1900s, experimental evidence suggested that this was true: To the pull of gravity or the draw of the electromagnetic force, the difference between left and right hardly mattered. So, physicists quite reasonably assumed that parity was a fundamental principle in the universe.
But in the 1950s, an experimental physicist at Columbia University named Chien-Shiung Wu devised an experiment that challengedand defiedthat law. Physics, she proved, to the astonishment of the field, did not always adhere to parity. Throughout her life, in fact, this woman demonstrated that parity was not the default; she flouted gender and racial barriers and eventually came to be known as the first lady of physics.
Wu was born in 1912 in a small fishing town north of Shanghai to parents who supported education for women. She displayed an extraordinary talent for physics as a college student in China. At the urging of Jing-Wei Gu, a female professor, she set her sights on earning a Ph.D. in the United States. In 1936, she arrived by ship in San Francisco and enrolled at the University of California, Berkeley, where she studied the nuclear fission of uranium.
She was 24 years old, in a new country where she wasnt fluent in the language and where the Chinese Exclusion Act, which prohibited Chinese workers from immigrating, was in full effect. It was preceded by the Page Act, which effectively banned the immigration of Chinese women based on the assumption that they intended to be sex workers. Wu was only able to enter the US because she was a student, but she was still ineligible for citizenship. There must have been so much tension and conflict there, says Leslie Hayes, vice president for education at the New York Historical Society. Im going to this place where I wont be welcome, but if I dont go, I wont be able to fulfill my goals and dreams.
After earning her Ph.D. in 1940, she married another Chinese-American physicist, and the couple moved to the East Coast in a long-shot search for tenure-track work. Major research institutes at the time were generally unwilling to hire women, people of color, or Jewish people, and the uptick in anti-Asian sentiment during World War II certainly didnt help. She was discriminated against as an Asian, but more so as a woman, Tsai-Chien Chiang wrote in his biography of Wu.
Nevertheless, shortly after a teaching stint at a womens college, she became the first female faculty member in Princeton Universitys physics department. That job was short lived; in 1944, Columbia University recruited her to work on the Manhattan Project, where she would advise a stumped Enrico Fermi on how to sustain a nuclear chain reaction.
Wu returned to research at Columbia after the war. Her reputation for brilliance and meticulousness grew in 1949 when she became the first to design an experiment that proved Fermis theory of beta decay, a type of radioactive decay in which a neutron spontaneously breaks down into a proton and a high-speed electron (a.k.a., a beta particle). In 1956, two theoretical physicists, Tsung-Dao Lee of Columbia and Chen Ning Yang of Princeton, sought Wus expertise in answering a provocative question: Is parity really conserved across the universe?
The law had been called into question by a problem known as theta-tau puzzle, a recently discovered paradox in particle physics. Theta and tau were two subatomic particles that were exactly the same in every respectexcept that one decayed into two smaller particles, and the other into three. This asymmetry confounded the physics community. Yang and Lee dove deep into the literature to see if anyone had ever actually proven that the nucleus of a particle always behaved symmetrically. As they found out, nobody had. So Wu, who they consulted during the process of writing their theoretical paper, got to work designing an experiment that would prove that it didnt.
Over the next few months, the men were in near constant communication with Wu. The monumental experiment that she designed and carried out rang the death knell for the concept of parity conservation in weak interactions, wrote nuclear physicist Noemie Benczer-Koller in her biography of Wu. Wus findings sparked such a sensation that they led to a Nobel Prize in physicsbut only for Yang and Lee. Wus groundbreaking work in proving the theory they advanced was ignored.
Though her genius allowed her to work in the same spaces as theoretical scientists, says Hayes, once there, she was not treated as a peer. But despite how frequently she experienced discrimination throughout her careerduring which she won every award in the field except the NobelWu didnt stop researching until her retirement in 1981.
Throughout her life, she was an outspoken advocate for the advancement of female physicistscampaigning, for the rest of her life, for the establishment of parity where it actually counted. Why didnt we encourage more women to go into science? she asked the crowd at an MIT symposium in 1964. I wonder whether the tiny atoms and nuclei, or the mathematical symbols, or the DNA molecules, have any preference for either masculine or feminine treatment.
Originally posted here:
Chien-Shiung Wus work defied the laws of physics - Popular Science
$5 million from Boeing will support UCLA quantum science and technology research | UCLA – UCLA Newsroom
UCLA has received a $5 million pledge from Boeing Co. to support faculty at the Center for Quantum Science and Engineering.
The center, which is jointly operated by the UCLA College Division of Physical Sciences and the UCLA Samueli School of Engineering, brings together scientists and engineers at the leading edge of quantum information science and technology. Its members have expertise in disciplines spanning physics, materials science, electrical engineering, computer science, chemistry and mathematics.
We are grateful for Boeings significant pledge, which will help drive innovation in quantum science, said MiguelGarca-Garibay, UCLAs dean of physical sciences. This remarkable investment demonstrates confidence that UCLAs renowned faculty and researchers will spur progress in this emerging field.
UCLA faculty and researchers are already working on exciting advances in quantum science and engineering, Garca-Garibaysaid. And the divisions new one-year masters program, which begins this fall, will help meet the huge demand for trained professionals in quantum technologies.
Quantum science explores the laws of nature that apply to matter at the very smallest scales, like atoms and subatomic particles. Scientists and engineers believe that controlling quantum systems has vast potential for advancing fields ranging from medicine to national security.
Harnessing quantum technologies for the aerospace industry is one of the great challenges we face in the coming years, said Greg Hyslop, Boeings chief engineer and executive vice president of engineering, test and technology. We are committed to growing this field of study and our relationship with UCLA moves us in that direction.
In addition to its uses in aerospace, examples of quantum theory already in action include superconducting magnets, lasers and MRI scans. The next generation of quantum technology will enable powerful quantum computers, sensors and communication systems and transform clinical trials, defense systems, clean water systems and a wide range of other technologies.
Quantum information science and technology promises society-changing capabilities in everything from medicine to computing and beyond, said Eric Hudson, UCLAs David S. Saxon Presidential Professor of Physics and co-director of the center. There is still, however, much work to be done to realize these benefits. This work requires serious partnership between academia and industry, and the Boeing pledge will be an enormous help in both supporting cutting-edge research at UCLA and creating the needed relationships with industry stakeholders.
The Boeing gift complements recent support from the National Science Foundation, including a $25 million award in 2020 to the multi-universityNSF Quantum Leap Challenge Institute for Present and Future Quantum Computation, which Hudson co-directs. And in 2021, the UCLA center received a five-year,$3 million traineeship grantfor doctoral students from the NSF.
Founded in 2018, the Center for Quantum Science and Engineering draws from the talents and creativity of dozens of faculty members and students.
Boeings support is a huge boost for quantum science and engineering at UCLA, said Mark Gyure, executive director of the center and a UCLA adjunct professor of electrical and computer engineering at the UCLA Samueli School of Engineering. Enhancing the Center for Quantum Science and Engineering will attract additional world-class faculty in this rapidly growing field and, together with Boeing and other companies in the region, establish Los Angeles and Southern California as a major hub in quantum science and technology.
More here:
$5 million from Boeing will support UCLA quantum science and technology research – UCLA Samueli School of Engineering Newsroom
UCLA has received a $5 million pledge from Boeing Co. to support faculty at the Center for Quantum Science and Engineering.
The center, which is jointly operated by the UCLA College Division of Physical Sciences and the UCLA Samueli School of Engineering, brings together scientists and engineers at the leading edge of quantum information science and technology. Its members have expertise in disciplines spanning physics, materials science, electrical engineering, computer science, chemistry and mathematics.
We are grateful for Boeings significant pledge, which will help drive innovation in quantum science, said Miguel Garca-Garibay, UCLAs dean of physical sciences. This remarkable investment demonstrates confidence that UCLAs renowned faculty and researchers will spur progress in this emerging field.
Harnessing quantum technologies for the aerospace industry is one of the great challenges we face in the coming years, said Greg Hyslop.
UCLA faculty and researchers are already working on exciting advances in quantum science and engineering, Garca-Garibay said. And the divisions new one-year masters program, which begins this fall, will help meet the huge demand for trained professionals in quantum technologies.
Quantum science explores the laws of nature that apply to matter at the very smallest scales, like atoms and subatomic particles. Scientists and engineers believe that controlling quantum systems has vast potential for advancing fields ranging from medicine to national security.
Harnessing quantum technologies for the aerospace industry is one of the great challenges we face in the coming years, said Greg Hyslop, Boeings chief engineer and executive vice president of engineering, test and technology. We are committed to growing this field of study and our relationship with UCLA moves us in that direction.
In addition to its uses in aerospace, examples of quantum theory already in action include superconducting magnets, lasers and MRI scans. The next generation of quantum technology will enable powerful quantum computers, sensors and communication systems and transform clinical trials, defense systems, clean water systems and a wide range of other technologies.
Quantum information science and technology promises society-changing capabilities in everything from medicine to computing and beyond, said Eric Hudson.
Quantum information science and technology promises society-changing capabilities in everything from medicine to computing and beyond, said Eric Hudson, UCLAs David S. Saxon Presidential Professor of Physics and co-director of the center. There is still, however, much work to be done to realize these benefits. This work requires serious partnership between academia and industry, and the Boeing pledge will be an enormous help in both supporting cutting-edge research at UCLA and creating the needed relationships with industry stakeholders.
The Boeing gift complements recent support from the National Science Foundation, including a $25 million award in 2020 to the multi-university NSF Quantum Leap Challenge Institute for Present and Future Quantum Computation, which Hudson co-directs. And in 2021, the UCLA center received a five-year, $3 million traineeship grant for doctoral students from the NSF.
Founded in 2018, the Center for Quantum Science and Engineering draws from the talents and creativity of dozens of faculty members and students.
Boeings support is a huge boost for quantum science and engineering at UCLA, said Mark Gyure, executive director of the center and a UCLA adjunct professor of electrical and computer engineering at the UCLA Samueli School of Engineering. Enhancing the Center for Quantum Science and Engineering will attract additional world-class faculty in this rapidly growing field and, together with Boeing and other companies in the region, establish Los Angeles and Southern California as a major hub in quantum science and technology.
Go here to read the rest: