Category Archives: Quantum Physics

Learn more about the mysteries of the universe on Dark Matter Day – University News: The University of Western Australia

Think the universe is just made up of stars, planets, asteroids, comets and space dust? Think again.

Scientists now believe dark matter, so far only detected through its gravity-based effects in space, makes up about a quarter of the total energy of the universe, and about 80 per cent of all mass.

However, it is composed of particles that do not absorb, reflect or emit light so they cant be detected by observing electromagnetic radiation. So dark matter is material that cannot be seen directly.

Dr Ben McAllister is a physicist at the UWA Node of the ARC Centre of Excellence for Dark Matter Particle Physics (CDMPP) and The University of Western Australias Quantum Technology and Dark Matter Research Lab.

He spends a large part of his working life trying to unlock the mysteries of dark matter and is at the forefront of a free public event for Dark Matter Day this Saturday, 30 October.

Its the biggest mystery in the universe many scientists around the world are trying to unlock the big cosmic mystery of what dark matter actually is using lots of different methods, Dr McAllister said.

The Forrest Prospect Fellow is one of the West Australian researchers at the forefront of the search, as part of the Australia-wide ORGAN Experiment to detect a particle called the axion.

To do this we use whats called a microwave cavity haloscope, which is basically an empty copper can placed in a very strong, very cold magnetic field, Dr McAllister said.

If axions are dark matter and exist all around us, one might enter the resonant cavity, react with the magnetic field and transform into a particle of light a photon.

Image: Members of the Quantum Technology and Dark Matter Research lab use UWA's haloscope in a bid to unlock the mysteries of dark matter.

If youre interested in hearing more about Dr McAllisters work and the search for dark matter, tune in to Dark Matter Day a live, virtual and all-ages event this Saturday 30 October from 2pm to 4.30pm.

There will be lots to see and explore including an introduction to dark matter, talks about dark matter, live Q&As and kids activities and competitions, as well as a chance for a virtual tour of the UWA labs, Dr McAllister said.

To register and receive a link to the ARC Centre of Excellence in Dark Matter Particle Physics Gather town (the virtual meeting place), click here.

See the article here:

Learn more about the mysteries of the universe on Dark Matter Day - University News: The University of Western Australia

Oregon-based artist makes disappearing sculptures inspired by physics – OregonLive

Julian Voss-Andreaes quantum sculptures are a combination of art and science that reflect his background in both fields.

While studying physics in Europe in 1999, Voss-Andreae asked himself what it would feel like to be a quantum object moving through time and space. Later, after moving to Portland and enrolling at the Pacific Northwest College of Art, he used the same idea to create what he calls an intuitively simple sculpture.

Quantum Man, which is now displayed at the Maryhill Museum of Art in Goldendale, Washington, was the result. While conceptually the project came together just as he had hoped, Voss-Andreae was surprised by how visually striking it proved to be.

It looks solid from both sides, but directly from one angle, it seems to disappear, Voss-Andreae said. And I felt this was a really interesting connection with how quantum physics tells us that everything depends on your perspective.

His quantum sculptures are made up of a series of metal plates that define cross-sections of the figure being depicted. Theyre welded together, spaced apart by strategically placed pins. In quantum physics, Voss-Andreae said, an object is described as wavefronts running perpendicular to its direction of movement. The metal plates of his sculptures represent these wavefronts.

Voss-Andreaes quantum sculptures have been included in public and private art collections worldwide. In Portland, The Reader, which depicts a cross-legged woman reading a book in her lap, can be seen at Portland Community Colleges Southeast Campus.

-- Dave Killen

Go here to read the rest:

Oregon-based artist makes disappearing sculptures inspired by physics - OregonLive

The Mystery of the Cosmos: What Exactly Are We Looking For? – lareviewofbooks

FOR AS LONG as our species can remember, even before Plato and Confucius, we were deploying two pairs of conceptual distinctions to carve up the world and make it understandable: the distinction between parts and wholes, and the distinction between particulars and universals.

A Honda engine is a part that along with other parts, like the steering wheel, the gears, and the fan belt composes the whole known as a Honda car. That very same engine, meanwhile, is also along with Toyota engines, General Motors engines, and Ford engines a particular that embodies or instantiates the universal idea of engine-ness.

What happens, then, when we take these two conceptual screens, so helpful for making sense of the perceivable world, and forge out into the heavens and down into the quantum?

Many of the greatest physicists tell us that any fundamental resolution of cosmological mystery will have to be conceptually mathematically beautiful. And in terms of theory, as far as we in the early 21st century can tell, any such beautiful resolution will center on a reconciliation of quantum mechanics, which focuses on the universe at a micro level, and the theory of relativity, which describes the universe at a macro level. As Einstein said, speaking of human psychology and not the cosmos, the only physical theories that we are willing to accept are the beautiful ones.

Think of a fern, we are told, with branches sprouting from its main stem. Sprouting from each of those branches there appear yet smaller ones that resemble it, and then sprouting from each of them there are even smaller ones that resemble it and so on, theoretically, ad infinitum. The branches, then, all vary the same pattern. But they do so at ever tinier scales and shifting positions. Varying the same pattern at ever decreasing magnitudes and altering orientations is, in a basic sense, what a fractal does. For this reason, fractals often are analogized to linguistic dialects, which preserve a languages structure while varying it across size and location.

Fractals get generated by a recursive algorithm, and each new execution is generated by applying the algorithm in question to the result of the previous one, creating as these iterations build up and depending on the algorithms features fantastic geometrical figures. And, as the Harvard physicist Nicole Yunger Halpern says, fractals are beginning to provide an exciting way of conceptualizing whats going on at the frontiers of physics. Cosmological systems, scientists are discovering, can exhibit fractal-like behavior, Yunger Halpern explains, meaning that they look very much the same at different spatial and temporal scales.

In the most exotic specimens, where fabulous spirals, tongues, and brocades begin to appear, the fractal is too smoothly continuous to divide into parts in any meaningful way. Its much more apt to divide a fractal into components based on each new iteration of the algorithm: first iteration, second iteration, third iteration, and so on. But that means that the whole we see is composed not of parts but of particulars: particulars that each instantiate the same universal that universal, of course, being the algorithm itself. A fractals beauty, then, emerges from a crossover of the two ur-distinctions. It emerges from the gorgeous ways in which particulars, not parts, compose a whole.

Physicists find a second source of beauty in the symmetries revealed by and in their calculations. Symmetry varies the same pattern over and over. But not at different scales and orientations, as fractals do. Instead, symmetries vary a pattern through different rotations and reflections.

The physicist Sabine Hossenfelder deploys the analogy of a mandala to give a sense of such reflections and rotations. A mandala takes a pattern and then reflects it so that right becomes left and left becomes right, or rotates it so that up becomes down and down becomes up, over and over again. Both reflective and rotational symmetry form the backbone of some of the most influential theories of modern physics. Paul Diracs equations display a form of reflective symmetry, Hossenfelder says, by incorporating particles of antimatter with the same mass as corresponding particles [] with the opposite charge. Contemporary string theory embodies a rotational symmetry by which, as Steven Weinberg writes, when you rotate an object from an ordinary dimension to a quantum dimension [] a particle of force becomes a particle of matter and vice versa.

Think of a Persian carpet. When you marvel at its symmetry the same pattern but rotated and reflected in multiple ways what exactly, in terms of those fundamental concepts, parts and wholes or particulars and universals, are you savoring? Certainly, the parts of the carpet, each containing the exact same pattern, however rotated or reflected, are what, summed together, compose the whole. But they dont do so in the way a cars parts an engine, a fuel tank, a fan belt, and so forth compose the whole of a car. Unlike the parts of my car, the parts of the carpet are identical, as if my car contained 80 engines, reflected and rotated in relation to each other.

So if the parts of the carpet dont compose a whole in the typical fashion, maybe its more apt to say that the carpet is made up of particulars that each instantiate the same universal, which of course is what a pattern is. But that doesnt quite work either. For a particular to instantiate a universal, it must embody it in a particular way. A Hondas engine instantiates the universal engine through the particularities of the Hondas design, while a Toyotas engine instantiates the universal engine through the particularities of a Toyotas design. But theres nothing particular, at least in this way, in the particulars of the carpet. Each instantiates the universal the pattern in exactly the same way, merely rotating or reflecting it. Each part universally, not particularly, embodies the pattern.

Maybe, then, the carpet can best be described as possessing identifiable parts, each of which instantiates the same pure universal, simply rotated and reflected as the case may be. Perhaps the beauty of symmetry, in other words, rests not in the ways in which its parts compose a whole, since they dont do so the way a cars parts compose a whole. Nor does it lie in the ways in which it arrays particulars that instantiate a universal since, again, nothing in the carpet particularizes a universal in the way my cars engine does. Instead, symmetrys beauty lies in the way it accomplishes a kind of crossover. The beauty of a symmetrical design emerges, it would seem, from the ways its rotationally and reflectively arranged parts each instantiate the same unalloyed universal.

But how is it for the cosmos? Physicists often use the term symmetry in an exceedingly broad sense. Symmetry exists whenever some components of a system remain the same as the rest changes, just as the pattern of a carpet remains the same through its various rotations and reflections. An example of such symmetry, for physicists, arises from the basic fact that the laws of physics remain unaltered no matter how much we vary our location in space-time.

As awe-inspiring as that reality might be, its not beautiful in the more specific sense of the carpet in the sense of parts mirroring each other by instantiating the same universal through rotation and reflection. For that, we have to turn to the content of the laws of physics themselves, to the symmetry of Diracs equations, for example, or those of string theory. We also find the beauty of parts instantiating the same universal, the same pattern, in Murray Gell-Manns discovery that all the particles could be classified by symmetric patterns known as multiplets, or Steven Weinbergs revelation that certain internal symmetries between electrons and neutrinos necessitate the existence of the several fields, such as the electromagnetic field, in the Standard Model.

Symmetrical beauty lies not in how various parts compose a whole, nor in how various particulars instantiate a universal. Rather, it lies in how various parts instantiate a universal while rotating or reflecting it. Such features of the cosmos are, for physicists, profoundly beautiful. And they feel profoundly explanatory. Why? Because of the way they ultimately correspond to our understanding of the symmetrical beauty of a snowflake, how the parts of a system instantiate the same universal in mirror images. And the rest of us can, even if from afar, see why.

Beyond fractals and symmetries and of course, many fractals also display symmetry physicists find beauty as well in the way in which different aspects of the physical world mathematically map each other. The discovery that vastly disparate facets of reality share a common structure or display the same network of relationships that you can map them onto each other gives the sense of profound explanatory insight.

Consider, to use a common example, the structural parallels between Joe, John, and Bobby Kennedy and Archie, Peyton, and Eli Manning. The fatherelder son younger son relationships in each family map onto each other exactly, even though the individual elements on either side differ. This kind of sameness between structures is often called isomorphism, iso being Greek for same, and morph for shape or form. Because the Kennedys and the Mannings are different individuals, the structures, while isomorphic, are not identical.

When it comes to physics, finding isomorphisms or mutual mappings between otherwise non-identical entities yields deep understanding. If one has really technically penetrated a subject, as John von Neumann once said, things that previously seemed in complete contrast might reveal themselves as purely mathematical transformations of each other. Such aesthetic beauty and hence explanatory satisfaction can, for example, be found, as the Nobel laureate Subrahmanyan Chandrasekhar says, in the way in which the theory of colliding waves and the theory of black holes map onto each other.

But why is mapping beautiful? And, for those who find beauty explanatorily satisfying, why is isomorphism so satisfyingly explanatory?

Return for a moment to the Kennedys and the Mannings. Each family particularizes a common structure: the structure of father, elder son, and younger son. But though each family might be its own particular, the isomorphism the common structure that each instantiates is a kind of whole, not a universal. After all, when it comes to universals, the Kennedys and the Mannings instantiate very different ones. The Kennedys embody the universals of politics, and the Mannings the universals of sports. They are, to use von Neumanns words, in complete contrast. Instead, its more apt to say that each of the two particulars instantiates the same whole, if a whole is something greater than the sum of its parts if it is whatever it is that structures and connects those parts.

Physicists find beauty, as a last example, in equations. Think of E = mc2. Energy equals mass times the speed of light squared. Both m and c2 are parts, as the philosopher of science Robert Crease says, of one side of the equation. E, the other side of the equation, is a universal, a property that is instantiated in particles across the cosmos. A useful term for this relationship, in which parts on one side of an equation compose universals on the other side is translation. Physicists often employ this term in referring to equations. The metaphor of languages and their translations pervades the philosophical analysis of equations, and it helps explain their beauty. It could end up being, as Rodolfo Gambini and Jorge Pullin say, that string theory and loop quantum gravity both provide quantum theories of gravity cast in different languages. And the required equations, A. R. P. Rau writes, would then be like dictionaries allowing us to go from one to another.

The metaphor of translation, when applied to equations, proves to be an apt one. When a given sentence translates from one language into another, the words in the first do not map onto the words in the second one-to-one. Instead, the words in one language which are parts of speech together compose a meaning, a universal, in the other. Thats what it means for them to be translated. For example, a string of English words, such as the moment when a meal is concluded but the people around the table continue to chat, are all needed, together, to compose the meaning captured by sobremesa in Spanish. Those words are parts of English. The Spanish sobremesa to which they translate is a universal, one we have all experienced in our own particular ways.

The Harvard mathematician Barry Mazur neatly illustrates this translational aspect of equations. He analogizes it to poetry and in so doing highlights its capacity for beauty. Consider, Mazur says, these lines of Yeats: Like a long-legged fly upon the stream / His mind moves upon silence.

Here, Mazur observes, [T]he equation is between something that is concrete/sensual and external (the long-legged fly upon the stream) and something that might actually be even [] much harder to catch and hold still: a curious interior state.

In other words, in Yeatss equation, the stream and the long-legged fly on the one side are parts that together compose the universal, the property of a curious inner state a mind moving upon silence on the other.

The quest for beauty and, if beauty is what gives us a sense that we have understood, then the quest for understanding too ultimately requires us to burst through the ur-categories, the categories through which we see the world as consisting of particulars that instantiate universals and parts that compose wholes. Here, at the precipice of our understanding, we need the ur-categories to switch dance partners. Here, its particulars that must pair up with wholes, either composing them as with fractals or instantiating them as with isomorphisms. And its parts that must mate with universals again, either instantiating them as in symmetry or composing them as in equations.

Symmetries get analogized to mirrors, and isomorphisms to maps. And that makes sense; symmetries have to do with one thing repeating itself over and over, while isomorphisms have to do with one thing relating to another. In the same vein, fractals get likened to dialects, and equations to translations. And this, too, makes sense: fractals deal with one thing varying itself over and over, while equations deal with one thing relating to another. Mirrors are to maps what dialects are to translations. Each metaphor contributes to capturing what it is in symmetries, isomorphisms, fractals, and equations that endows them with the potential for transcendent beauty.

Consider the holographic theory that Juan Maldacena, a theoretical physicist at the Institute for Advanced Study, offers to reconcile quantum field theory and relativity. In his principal illustration, Maldacena depicts a disk with various symmetries in its interior, each part instantiating the same universal rotated and reflected. These correspond to the gravitational universe as relativity understands it. But at its edges, the disk turns into fractals, the whole of its circumference being composed of endless particulars of the same algorithm, in various sizes and counter-positions. These represent the quantum. And whats more, the interior symmetries and the edge fractals can be shown to relate to each other through equations i.e., translations insofar as the parts in each compose universals that abide in the other. They also relate as isomorphisms mutual mappings in that each, the interior and the edge, is a particular that instantiates the same whole, the same structure. Its quite magical.

For millennia, we have understood the world through particulars that instantiate universals and parts that compose wholes. Now the mystery of the universe asks that we the we that Einstein referred to, the human community at large go even further. It beckons us to transcend the limits of our understanding by seeing the cosmos in terms of particulars that instantiate or compose wholes and parts that compose or instantiate universals. Thats what scientific beauty is, as physicists describe it to us. And if the truth must be beautiful, its also where the path to ultimate explanation lies.

Andrew Stark, a professor of strategic management at the University of Toronto, is the author of The Consolations of Mortality (Yale University Press, 2016). His essays and reviews have appeared in The New York Review of Books, Times Literary Supplement, The Wall Street Journal, The Atlantic, and other publications.

Featured image: A 3D version of the Mandelbrot set plot Map 44 from the book The Beauty of Fractals by Duncan Champney is licensed under CC BY-SA 4.0. Image has been cropped.

Read more from the original source:

The Mystery of the Cosmos: What Exactly Are We Looking For? - lareviewofbooks

Nanotech Solution: Research Unveils How Edgy Light on Graphene May Lead to Single Route of Information – Science Times

For a while, graphene has been a concentration of strong research in both academic and industrial backgrounds because of its unusual electrical conduction properties.

A Phys.orgreport said, as the slimmest material known to humans, graphene is particularly two-dimensional and has photonic and electronic properties from conventional 3D materials.

Researchers at Purdue University, including Todd Van Mechelen, Wenbo Sun, and Zubin Jacob, have found and shown in their research that the viscous fluid of graphene, the colliding electrons in solids with behavior similar to fluids, support unidirectional electromagnetic waves specifically on edge.

On the other hand, such edge waves are linked to a new topological stage of matter and signify a transition of phase in the material, not unlike the switch from solid to liquid.

ALSO READ: Physicists Discover Multilayered Heterostrcuture Platform to Achieve Ultrastrong Photon-to-Magnon Coupling

(Photo: Jynto on Wikimedia Commons)Comparison STM topographic image of a section of graphene sheet with spectroscopy images of electron interference

One notable feature of this new phase of graphene is that light travels a single direction along the edge of the material and is vigorous to disorder, deformation, and imperfections.

Researchers at Purdue have attached this nonreciprocal impact to developing "topological circulations," one-way routers of indications, the tiniest in the world, that could eventually be a breakthrough for on-chip, all-optical procedure.

Essentially, circulators are a fundamental building block in the so-called integrated optical circuits. However, they have resisted miniaturization due to their bulky mechanisms and the narrow bandwidth of the existing technologies.

Also indicated in the study published in the journal, Nature Communications, topological circulations are overcoming this by being both broadband and ultra-subwavelength, enabled by an extraordinarily electromagnetic phase of matter.

Applications for such technology comprise information routing and interconnects between classical and quantum computing systems.

According to a BBVAreport, to understand how quantum computing works and quantum mechanics on which it is based, there is a need to look back to the beginning of the 20th century, "when this physical theory was originally raised."

Among other subjects of research, quantum physics started with the study of the particles of an atom, including its electrons at a microscopic scale, something that has never been done in the past.

Doctor in theoretical physics, high school teacher, and advisor to an exhibition hosted at the Center of Contemporary Culture of Barcelona called Quantum, Arnau Riera defines the term as a conceptual change.

In the classical world, the systems' properties being studied are well defined. On the other hand, in the quantum world, this is not the case in which particles can have different values. They are not secluded subjects, and their states are weak, Riera explained.

In classical computing, the expert also said, "We know how to solve problems," because of computer language used when programming. More so, operators not feasible in bit computing can be carried out with a quantumcomputer.

In quantum computing, all numbers and probabilities that can be developed with the so-called N qubits are superimposed with 1,000 qubits, the exponential probabilities go far beyond those that are done in classical computing.

Related information about the graphene light project is shown Charbax's YouTube video below:

RELATED ARTICLE: Obtaining Motional Ground State of Larger-Scale Object Made Possible by Physics Experts

Check out more news and information on Nanotechnologyin Science Times.

Read more here:

Nanotech Solution: Research Unveils How Edgy Light on Graphene May Lead to Single Route of Information - Science Times

October: Bristol physicist lands prestigious award | News and features – University of Bristol

Associate Professor Jonathan Matthews has been awarded the 2021 Philip Leverhulme Prize for physics.

The awards, announced today, are for researchers whose work has had international impact and whose future research career is exceptionally promising.

Prof Matthewsis Co-Director of the University of BristolsQuantum Engineering Technology Labsand a member ofBristol Quantum Information Institute. His research includes seminal contributions to the field of integrated quantum photonics these are optical microchips that generate and control quantum states of light for applications in technologies enabled and enhanced by quantum physics.

I am delighted and honoured to be awarded a Philip Leverhulme Prize. It recognises work I am extremely proud of and that Ive been able to undertake thanks to my institutions support, the UK and EU investments in quantum technologies and the hard work and brilliance of my team in QET Labs, past and present. Bristol has an exciting ecosystem around quantum information science and technology training, research and commercialisation. I am thrilled by what we can do next.

The Leverhulme Trust has announced the winners of the 2021 Philip Leverhulme Prizes today. Chosen from over 400 nominations, the Trust offered five prizes in each of the following subject areas: Classics, Earth Sciences, Physics, Politics and International Relations, Psychology; Visual and Performing Arts.

Now in its twentieth year, this scheme commemorates the contribution to the work of the Trust made by Philip, Third Viscount Leverhulme and grandson of William Lever, the founder of theLeverhulme Trust. The prizes recognise and celebrate the achievement of exceptional researchers whose work has already attracted international recognition and whose future careers are exceptionally promising.

Anna Vignoles, Director of the Leverhulme Trust, said: I am delighted that we have been able to award these prestigious prizes to such a stunningly talented group of academics. This round was more competitive than ever and the judges had an incredibly difficult task. This is evident from the achievements of the winners, who are working on a very diverse set of topics, from the physics of dark matter to climate science, from research into policing and inequality through to participatory art.

Each prize is now worth 100,000 and thirty are awarded annually. They may be used for any purpose that advances the prize winners research. Detailed citations on each of the winners will be published in due course.

TheQuantum Engineering Technology Labs (QET Labs)was launched in 2015, with the mission to to take quantum science discoveries out of the lab and engineer them into technologies for the benefit of society. This includes novel routes to quantum computing hardware, quantum communications, enhanced sensing & imaging and new platforms to investigate fundamental quantum physics. QET Labs brings together over 28 million worth of activity andcomprises over 100 academics, staff and students in the Schools of Physics and Electrical and Electronic Engineering. Read more here.

Bristol Quantum Information Institute

Quantum information and its translation into technologies is one of the most exciting research activities in science and technology today. Long at the forefront of the growing worldwide activity in this area, the Bristol Quantum Information Institute crystallises our research across the entire spectrum, from theory to technology. With our expert cross-disciplinary team, including founders of the field, we have expertise in all major areas of theoretical quantum information science and in experiment. We foster partnerships with the private sector and provide superb teaching and training for the future generation of quantum scientists and engineers and the prototypes of tomorrow. Read more here.

Originally posted here:

October: Bristol physicist lands prestigious award | News and features - University of Bristol

Scientists decode mysteries of the brain with dark matter and the multiverse – CNET

American physicists Richard Feynman and Yang Chen Ning, circa 1950s.

Quantum particles exist and don't exist. Space is likely a moldable fabric. Dark matter is invisible, yet it binds the entire universe. And our universe, created from an explosion 13.8 billion years ago, is infinitely expanding into something. Or, maybe nothing.

Unless you're a trained physicist, at least one of those statements probably hurts your brain.

Modernize your home with the latest news on smart home products and trends. Delivered Tuesdays and Thursdays.

We experience a sort of cognitive dissonance when attempting to comprehend the vastness of such unimaginable, complex concepts. But theoretical physicists think about, and even conjure, these ideas all day, every day.

How do they do it?

According to new research, published Oct. 11 in the journal NPJ Science of Learning, physicists' brains grapple with counterintuitive theories by automatically categorizing things as either "measurable" or "immeasurable."

"Most of the things we encounter every day, like a rock, a lake, a flower, you can say, 'Well it's about the size of my fist... but the concepts that physicists think about don't have that property," said Marcel Just, a psychologist at Carnegie Mellon University and first author of the study.

To study exactly how physicists' brains work, Just and fellow researchers gave 10 Carnegie Mellon physics faculty members -- with differing specialties and language backgrounds -- a ledger of physics concepts. Then, they used fMRI (functional magnetic resonance imaging) scans to examine the subjects' brain activity as the individuals went down the list.

In contrast to normal MRIs, which help with anatomical studies, functional MRIs can detect brain activity based on fluctuations in blood flow, glucose and oxygen.

Turns out, each physicist's brain organizes concepts within the field into two groups. The researchers were just left to figure out how to label each group.

"I looked at the list, and said well, 'What do concepts like potential energy, torque, acceleration, wavelength, frequency ... have in common? At the other end of the same scale, there are things like dark matter; duality; cosmology; multiverse," explained co-author Reinhard A. Schumacher, a particle physicist at Carnegie Mellon University.

The average person might lump Schumacher's descriptions on the latter end of the spectrum as mind-bending and inexplicable, but the most important connecting factor, he realized, is that they're immeasurable.

In the brain scans, these concepts didn't indicate activity of what he calls "extent," loosely referring to placing tangible restrictions on something.

Physicists' brains, the team concluded, automatically discern between abstract items, like quantum physics, and comprehensible, measurable items like velocity and frequency.

Basically, the stuff that provokes a sense of perplexity in us non-physicists doesn't elicit thoughts of "extent" for them. That's probably why they can think about those things with relative ease, whereas we begin worrying about scale.

Speaking from experience, Schumacher says considering abstract physics ideas as a student can be very different from conceiving them as a longtime physicist.

"I think there's a sense that as physicists grow older, the concepts kind of crystallize in the mind, and you end up using them in a more efficient way," Schumacher said.

"The more you use these ideas, the more they become like old friends."

The brain scans also support that assertion. Not only did the team test faculty brain activity, they also looked at physics students' brains.

"In the old physicists who have been doing it for years," Schumacher said, "it's like the brain is more efficient. It doesn't have to light up as much, because you're going right for the thing right away."

Additionally, Just noted the professors "had more right hemisphere activation, suggesting that they had a greater number of sort of distantly associated concepts."

While a physics student might relate velocity to acceleration, it seems the professors were relating velocity to much more niche subjects activated by remote locations of the brain. Velocity of the universe's expansion, perhaps?

Just emphasizes how evolution of the brain to accommodate new, abstract ideas happens to all of us. Perhaps only theoretical physicists can easily comprehend duality or a multiverse, but people working in other fields, of course, ponder complex ideas of their own.

Chemists, for instance, have to visualize unseen orbital structures of atoms and bond configurations only drawn in textbooks. And the general public, over time, has adapted to inventions like iPhones and the cloud. Think about it. We can comprehend the cloud, which is pretty bizarre.

Imagine traveling back in time to the 1700s and explaining to someone the workings of an invisible data storage mine. They'd probably feel the way we do when we picture the quantum domain -- we'd be the "physicists" to them.

"We have this understanding now," explained Schumacher. "Even if you develop some new scientific concept, we can more or less predict what the brain is going to do with it."

For instance, during the exercise, when asked to think about oscillations, Just said some subject's brains activated sections relating to rhythmic activity. The organ had basically repurposed areas used in ancient times for general rhythms, like maybe music, to allow for modern physics concepts.

"The idea of sine waves is just a couple hundred years old," Just said. "But people have been looking at ripples on a pond forever."

Just also suggests it could become possible to actively help the brain repurpose itself, harnessing its ability to adapt. If we allow children to expand their minds through education by introducing abstract concepts sooner and more rigorously, he says, maybe one day they can readily imagine things the way scientists do.

Even further down the road, he says the findings could inform studies of mental health -- how does the brain's organizational and adaptation capabilities operate while in distress?

"I think it's the most fascinating question in the world," Just remarked. "'What is the essence of human brains? How can we make them healthier; think better?"

Link:

Scientists decode mysteries of the brain with dark matter and the multiverse - CNET

Purdue professors recognized with highest honor in their fields – Journal & Courier

News Reports| Lafayette Journal & Courier

WEST LAFAYETTE, Ind. Three Purdue professors have been selected to receive the highest honors in their respective fields:humanities and social sciences andquantum sciences, according to a Purdue press release.

ProfessorEllen Ernst Kossek is a distinguished professor ofManagement in the Krannert School of Management. She was nominated by her peers andchosen by university president Mitch Daniels to be giventhe2021 Lu Ann Aday Award.

TheLu Ann Aday Awardwas first established in 2017 by Purdue alumna Lu Ann Aday, a distinguished professor in Public Health and Medicine at the University of Texas School of Public Health-Houston, according to the release. This award annually recognizes a member of Purdue faculty who has achieved major impacts in the field of humanities and social sciences.

Kossek is a social scientist who researches how the functions of the workplace - employees, managers and overall organizations - can improve workplace cultures and the "effectiveness of work-family policies," according to the Purdue release.

Along with her research, Kossek also continuously organizes the"Dismantling Biases: Bridging Research to Practice"conference. Research from this conference has been published as books and referred articles, as stated in the release. The next conference is set for March 22-24, 2022.

Kossek will givethe Lu Ann Aday Distinguished Lecture at 2 p.m. on Nov. 1. The virtual lecture will be made available to the public.

Michael J. Manfra was nominated by his colleagues and selected by president Daniels to receive theArden L. Bement Jr. Award. This award was first established in 2015 by Purdue professor Emeritus Arden Bement and his wife, Louise Bement, to "annually recognize a Purdue faculty member for recent outstanding accomplishments in pure and applied sciences and engineering," according to the release.

Manfra is receiving this honor for his work in quantum physics. He and his team at Purdue reporter a landmark experiment in 2020 that found evidence of "anyons,"fractional statistics of quasiparticles. This was the first time direct evidence of such a substance's existence sincequasiparticles were first proposed in the early 1980s.

Manfra serves as thescientific director of Microsoft Quantum Lab West Lafayette andcontributesto the Quantum Science Center. He will give theArden L. Bement Jr. Distinguished Lecture at 3 p.m.on Nov. 12. This will be a virtual lecture and will be made available to the public, according to the release.

Yong Chen, a professor of physics and astronomy, electrical and computer engineering and thedirector of Purdue Quantum Science and Engineering Institute, willreceive the 2021 Herbert Newby McCoy Award. This prestigious award is given to those who have show outstanding work in the field of natural sciences.

Chen has successfully implemented a program at Purdue that focuses on "timely problems in nanoscience," according to the release. He continues to lead a large research group that works on quantum matter and devices.

Chen was one of the first in the world to "synthesize and study large-scale graphene and graphene single crystals," as stated in the release. As such, he is considered to be a global leader ingraphene-based materials.

In addition to his research, Chen serves on theGovernance Advisory Board forQuantum Science Center.

The 2021 recipients of these distinguished awardwill receive a cash prize along with a small grant for their university scholarly activities.

The rest is here:

Purdue professors recognized with highest honor in their fields - Journal & Courier

Physics Experiment Reveals Formation of a New State of Matter Breaks Time-Reversal Symmetry – SciTechDaily

The central principle of superconductivity is that electrons form pairs. But can they also condense into foursomes? Recent findings have suggested they can, and a physicist at KTH Royal Institute of Technology today published the first experimental evidence of this quadrupling effect and the mechanism by which this state of matter occurs.

Reporting in Nature Physics, Professor Egor Babaev and collaborators presented evidence of fermion quadrupling in a series of experimental measurements on the iron-based material, Ba1xKxFe2As2. The results follow nearly 20 years after Babaev first predicted this kind of phenomenon, and eight years after he published a paper predicting that it could occur in the material.

The pairing of electrons enables the quantum state of superconductivity, a zero-resistance state of conductivity which is used in MRI scanners and quantum computing. It occurs within a material as a result of two electrons bonding rather than repelling each other, as they would in a vacuum. The phenomenon was first described in a theory by, Leon Cooper, John Bardeen and John Schrieffer, whose work was awarded the Nobel Prize in 1972.

The iron-based superconductor material, Ba1xKxFe2As2, is mounted for experimental measurements. Credit: Vadim Grinenko, Federico Caglieris

So-called Cooper pairs are basically opposites that attract. Normally two electrons, which are negatively-charged subatomic particles, would strongly repel each other. But at low temperatures in a crystal they become loosely bound in pairs, giving rise to a robust long-range order. Currents of electron pairs no longer scatter from defects and obstacles and a conductor can lose all electrical resistance, becoming a new state of matter: a superconductor.

Only in recent years has the theoretical idea of four-fermion condensates become broadly accepted.

For a fermion quadrupling state to occur there has to be something that prevents condensation of pairs and prevents their flow without resistance, while allowing condensation of four-electron composites, Babaev says.

The Bardeen-Cooper-Schrieffer theory didnt allow for such behavior, so when Babaevs experimental collaborator at Technische Universtt Dresden, Vadim Grinenko, found in 2018 the first signs of a fermion quadrupling condensate, it challenged years of prevalent scientific agreement.

What followed was three years of experimentation and investigation at labs at multiple institutions in order to validate the finding.

Babaev says that key among the observations made is that fermionic quadruple condensates spontaneously break time-reversal symmetry. In physics time-reversal symmetry is a mathematical operation of replacing the expression for time with its negative in formulas or equations so that they describe an event in which time runs backward or all the motions are reversed.

If one inverts time direction, the fundamental laws of physics still hold. That also holds for typical superconductors: if the arrow of time is reversed, a typical superconductor would still be the same superconducting state.

However, in the case of a four-fermion condensate that we report, the time reversal puts it in a different state, he says.

It will probably take many years of research to fully understand this state, he says. The experiments open up a number of new questions, revealing a number of other unusual properties associated with its reaction to thermal gradients, magnetic fields and ultrasound that still have to be better understood.

Reference: State with spontaneously broken time-reversal symmetry above the superconducting phase transition by Vadim Grinenko, Daniel Weston, Federico Caglieris, Christoph Wuttke, Christian Hess, Tino Gottschall, Ilaria Maccari, Denis Gorbunov, Sergei Zherlitsyn, Jochen Wosnitza, Andreas Rydh, Kunihiro Kihou, Chul-Ho Lee, Rajib Sarkar, Shanu Dengre, Julien Garaud, Aliaksei Charnukha, Ruben Hhne, Kornelius Nielsch, Bernd Bchner, Hans-Henning Klauss and Egor Babaev, 18 October 2021, Nature Physics.DOI: 10.1038/s41567-021-01350-9

Contributing to the research were scientists from the following institutions: Institute for Solid State and Materials Physics, TU Dresden, Germany; Leibniz Institute for Solid State and Materials Research, Dresden; Stockhom University; Bergische Universtt at Wuppertal, Germany; Dresden High Magnetic Field Laboratory (HLD-EMFL); Wurzburg-Dresden Cluster of Excellence ct.qmat, Germany; Helmholtz-Zentrum, Germany; National Institute of Advanced Industrial Science and Technology (AIST), Japan; Institut Denis Poisson, France.

The rest is here:

Physics Experiment Reveals Formation of a New State of Matter Breaks Time-Reversal Symmetry - SciTechDaily

Harvard Astrophysicist Shares Wild Theory That Our Universe Was Created In A Lab By Aliens – BroBible

Avi Loeb, the former chairman of the astronomy department at Harvard University, is very well known in the scientific community for his outside-the-box (to put it lightly) thinking.

The decorated astronomer and theoretical physicist has in the past stated, among many things, that alien tech visited Earth in 2017, that there could be as many as a quadrillion alien spacecrafts traveling in our solar system, and that artificial intelligence will be the key to communicating with aliens, is now suggesting that our universe may have been created in a lab by aliens.

In an op-ed published in Scientific American this week, Avi Loeb posits, Now there are a variety of conjectures in the scientific literature for our cosmic origins A less explored possibility is that our universe was created in the laboratory of an advanced technological civilization. Since our universe has a flat geometry with a zero net energy, an advanced civilization could have developed a technology that created a baby universe out of nothing through quantum tunneling.

This possible origin story unifies the religious notion of a creator with the secular notion of quantum gravity. We do not possess a predictive theory that combines the two pillars of modern physics: quantum mechanics and gravity. But a more advanced civilization might have accomplished this feat and mastered the technology of creating baby universes. If that happened, then not only could it account for the origin of our universe but it would also suggest that a universe like our own which in this picture hosts an advanced technological civilization that gives birth to a new flat universe is like a biological system that maintains the longevity of its genetic material through multiple generations.

Related: TikTokers Immortality Theory Video On Life After Death Is Blowing Millions Of Minds

Got all that? Buckle in, theres more.

Avi Loeb also suggests that because we do not have the ability to reproduce the astrophysical conditions that led to our existence we are a low-level technological civilization, graded class C on the cosmic scale.

We would be higher on the scale, says Loeb, if we possessed the ability to recreate the habitable conditions on our planet for when the sun will die.

In fact, because of our deficiencies, he says we may be labeled class D since we are carelessly destroying the natural habitat on Earth through climate change, driven by our technologies.

A class B civilization could adjust the conditions in its immediate environment to be independent of its host star. A civilization ranked class A could recreate the cosmic conditions that gave rise to its existence, namely produce a baby universe in a laboratory.

Loeb concludes, The possibility that our civilization is not a particularly smart one should not take us by surprise. When I tell students at Harvard University that half of them are below the median of their class, they get upset. The stubborn reality might well be that we are statistically at the center of the bell-shaped probability distribution of our class of intelligent life-forms in the cosmos, even when taking into account our celebrated discovery of the Higgs boson by the Large Hadron Collider.

We must allow ourselves to look humbly through new telescopes, as envisioned by the recently announced Galileo Project, and search for smarter kids on our cosmic block. Otherwise, our ego trip may not end well, similarly to the experience of the dinosaurs, which dominated Earth until an object from space tarnished their illusion.

Related: Two New Dinosaur Species Discovered, Including The Nightmarish Horned Crocodile-Faced Hell Heron

If hes right and our universe was created in a lab by aliens then there are numerous other questions that need to be answered, such as, are our creators able to manipulate us and/or control our destinies? Or are we just part of some high-tech simulation as multiple scientists have hypothesized?

Read more from the original source:

Harvard Astrophysicist Shares Wild Theory That Our Universe Was Created In A Lab By Aliens - BroBible

Quantum computing pioneer Umesh Vazirani to give Cruickshank Lecture as part of three-day conference – EurekAlert

KINGSTON, R.I. Oct. 12, 2021 University of California, Berkeley Professor Umesh Vazirani, a pioneer in quantum computing algorithms and complexity theory, will deliver the annual University of Rhode Island Cruickshank Lecture on Monday, Oct. 18, in conjunction with the three-day Frontiers in Quantum Computing conference.

Frontiers in Quantum Computing, which celebrates the launch this semester of URIs new masters degree in quantum computing, will take place Oct. 18-20 on the Kingston Campus. More than 30 experts in the fields of quantum computing and quantum information science will deliver daily talks on such topics as the future of quantum computing, research and industry developments, and educational initiatives for the next generation of experts in the field.

This will be an impressive gathering, said Vanita Srinivasa, director of URIs Quantum Information Science program and a conference organizer. These scientists have made seminal contributions to quantum computing and quantum information science. We have speakers who are well-established in quantum information science, even before it was a major field, and we have speakers who are up and coming and are now among the top researchers in their fields.

Vazirani, the Roger A. Strauch Professor of Electrical Engineering and Computer Science at UC Berkeley and director of the Berkeley Quantum Computation Center, is considered one of the founders of the field of quantum computing. His talk will explore quantum computings impact on the foundations of quantum mechanics and the philosophy of science.

There are several different theories about how quantum mechanics can be interpreted. Advances in quantum computing will change our understanding of the foundations of quantum mechanics and maybe our overall view of the universe, said Leonard Kahn, chair of the URIDepartment of Physicswho helped organize the conference.

Vaziranis virtual talk, A Quantum Wave in Computing, will be presented to an in-person audience in room 100 of the Beaupre Center for Chemical and Forensic Sciences, 140 Flagg Road, on the Kingston campus, at 6:30 p.m. on Oct. 18. The lecture can also be viewed live with a link from the conferenceswebsite.

The conferences list of speakers includes U.S. Sen. Jack Reed, who will deliver an address at 9:45 am. on the opening day of the conference, along with experts from around the U.S. as well as Australia, Canada, Netherlands, and Denmark.

Jacob Taylor, a physicist at the National Institute of Standards and Technology, Joint Quantum Institute Fellow, and founder of the national effort overseeing implementation of the National Quantum Initiative Act, will deliver the conferences opening keynote address on Monday, Oct. 18, at 8 a.m. in the Ballroom of the Memorial Union.

Charles Tahan, assistant director for Quantum Information Science and director of the National Quantum Coordination Office in the White House Office of Science and Technology Policy (OTSP), will give the keynote address before the roundtable discussion on the future of quantum computing on Tuesday, Oct. 19, at 5:15 p.m. in the ballroom, which is sponsored by D-Wave.

The panel will include Taylor, the first assistant director for Quantum Information Science at the OSTP; Michelle Simmons, a pioneer in atomic electronics and silicon-based quantum computing and director of the Australian Research Councils Centre of Excellence for Quantum Computation and Communication Technology; Catherine McGeoch, Senior Scientist with D-Wave; and Christopher Lirakis, IBM Quantum Lead For Quantum Systems Deployment.

The panelists will provide their perspectives on the future of quantum computing from industry, government and academia, said Srinivasa. The future is uncertain, but hopeful, and there are exciting challenges along the way. Quantum computing technology has progressed from something thats been a dream to something that can actually be built.

Quantum computers have the promise of solving key problems that would take a prohibitively long time to execute on classical computers. Because of the nature of the quantum bit, as compared to the classical bit, some of those intractable calculations can be done on a quantum computer in minutes rather than thousands of years. The impact on many problems from molecular simulations to encryption of credit card data will have far-reaching consequences.

I dont think theres been a time when theres been this much publicity and press about quantum computing, said Kahn. Theres clearly a path forward but there are a lot of hurdles along the way.

With the conference celebrating URIs masters in quantum computing, education will be an important topic. Daily speakers will explore education initiatives, including developing curriculum at all levels to make the field more accessible to students. Presentations will include Chandralekha Singh, president of the American Association of Physics Teachers; Charles Robinson, IBM Quantum Computing Public Sector leader; and Robert Joynt, of the University of Wisconsin-Madison.

Other topics include implementation of quantum computing and industry developments, including talks by Christopher Savoie 92, founder and chief executive officer of Zapata Computing and a conference organizer, and Andrew King, director of Performance Research at D-Wave.

Its going to be amazing science that will be talked about at the conference, said Srinivasa, whose research focuses on quantum information processing theory for semiconductor systems. Christopher Savoie has commented that this conference is equivalent to any of the major conferences on quantum computing that hes been to.

###

Frontiers in Quantum Computing is free and open to the public. Except for the Cruickshank Lecture, all events will be held in the Memorial Union Ballroom, 50 Lower College Road, on the Kingston Campus. While events are in-person, some speakers will take part virtually. All sessions can also be viewed online. For more information or to take part, go to the conferenceswebsite.

The conference is sponsored by Zapata Computing, D-Wave, IBM Quantum, PSSC Labs, and Microway, along with URIs College of Arts and Sciences, University Libraries, Information Technology Services, the Office of the Provost, and the Department of Physics.

The Alexander M. Cruickshank Endowed Lectureship was established in 1999. It is named for Alexander M. Cruickshank, who served on the URI chemistry faculty for 30 years and was subsequently the director of the Gordon Research Conferences until his retirement in 1993. The lecture series is sponsored by the URI Department of Physics, the Gordon Research Center and URIs College of Arts and Sciences.

For more information, contact Leonard Kahn atlenkahn@uri.edu.

Read the original here:

Quantum computing pioneer Umesh Vazirani to give Cruickshank Lecture as part of three-day conference - EurekAlert