Category Archives: Quantum Computer
How researchers are mapping the future of quantum computing, using the tech of today – GeekWire
Pacific Northwest National Laboratory computer scientist Sriram Krishnamoorthy. (PNNL Photo)
Imagine a future where new therapeutic drugs are designed far faster and at a fraction of the cost they are today, enabled by the rapidly developing field of quantum computing.
The transformation on healthcare and personalized medicine would be tremendous, yet these are hardly the only fields this novel form of computing could revolutionize. From cryptography to supply-chain optimization to advances in solid-state physics, the coming era of quantum computers could bring about enormous changes, assuming its potential can be fully realized.
Yet many hurdles still need to be overcome before all of this can happen. This one of the reasons the Pacific Northwest National Laboratory and Microsoft have teamed up to advance this nascent field.
The developer of the Q# programming language, Microsoft Quantum recently announced the creation of an intermediate bridge that will allow Q# and other languages to be used to send instructions to different quantum hardware platforms. This includes the simulations being performed on PNNLs own powerful supercomputers, which are used to test the quantum algorithms that could one day run on those platforms. While scalable quantum computing is still years away, these simulations make it possible to design and test many of the approaches that will eventually be used.
We have extensive experience in terms of parallel programming for supercomputers, said PNNL computer scientist Sriram Krishnamoorthy. The question was, how do you use these classical supercomputers to understand how a quantum algorithm and quantum architectures would behave while we build these systems?
Thats an important question given that classical and quantum computing are so extremely different from each other. Quantum computing isnt Classical Computing 2.0. A quantum computer is no more an improved version of a classical computer than a lightbulb is a better version of a candle. While you might use one to simulate the other, that simulation will never be perfect because theyre such fundamentally different technologies.
Classical computing is based on bits, pieces of information that are either off or on to represent a zero or one. But a quantum bit, or qubit, can represent a zero or a one or any proportion of those two values at the same time. This makes it possible to perform computations in a very different way.
However, a qubit can only do this so long as it remains in a special state known as superposition. This, along with other features of quantum behavior such as entanglement, could potentially allow quantum computing to answer all kinds of complex problems, many of which are exponential in nature. These are exactly the kind of problems that classical computers cant readily solve if they can solve them at all.
For instance, much of the worlds electronic privacy is based on encryption methods that rely on prime numbers. While its easy to multiply two prime numbers, its extremely difficult to reverse the process by factoring the product of two primes. In some cases, a classical computer could run for 10,000 years and still not find the solution. A quantum computer, on the other hand, might be capable of performing the work in seconds.
That doesnt mean quantum computing will replace all tasks performed by classical computers. This includes programming the quantum computers themselves, which the very nature of quantum behaviors can make highly challenging. For instance, just the act of observing a qubit can make it decohere, causing it to lose its superposition and entangled states.
Such challenges drive some of the work being done by Microsoft Azures Quantum group. Expecting that both classical and quantum computing resources will be needed for large-scale quantum applications, Microsoft Quantum has developed a bridge they call QIR, which stands for quantum intermediate representation. The motivation behind QIR is to create a common interface at a point in the programming stack that avoids interfering with the qubits. Doing this makes the interface both language- and platform-agnostic, which allows different software and hardware to be used together.
To advance the field of quantum computing, we need to think beyond just how to build a particular end-to-end system, said Bettina Heim, senior software engineering manager with Microsoft Quantum, during a recent presentation. We need to think about how to grow a global ecosystem that facilitates developing and experimenting with different approaches.
Because these are still very early days think of where classical computing was 75 years ago many fundamental components still need to be developed and refined in this ecosystem, including quantum gates, algorithms and error correction. This is where PNNLs quantum simulator, DM-SIM comes in. By designing and testing different approaches and configurations of these elements, they can discover better ways of achieving their goals.
As Krishnamoorthy explains: What we currently lack and what we are trying to build with this simulation infrastructure is a turnkey solution that could allow, say a compiler writer or a noise model developer or a systems architect, to try different approaches in putting qubits together and ask the question: If they do this, what happens?
Of course, there will be many challenges and disappointments along the way, such as an upcoming retraction of a 2018 paper in the journal, Nature. The original study, partly funded by Microsoft, declared evidence of a theoretical particle called a Majorana fermion, which could have been a major quantum breakthrough. However, errors since found in the data contradict that claim.
But progress continues, and once reasonably robust and scalable quantum computers are available, all kinds of potential uses could become possible. Supply chain and logistics optimization might be ideal applications, generating new levels of efficiency and energy savings for business. Since quantum computing should also be able to perform very fast searches on unsorted data, applications that focus on financial data, climate data analysis and genomics are likely uses, as well.
Thats only the beginning. Quantum computers could be used to accurately simulate physical processes from chemistry and solid-state physics, ushering in a new era for these fields. Advances in material science could become possible because well be better able to simulate and identify molecular properties much faster and more accurately than we ever could before. Simulating proteins using quantum computers could lead to new knowledge about biology that would revolutionize healthcare.
In the future, quantum cryptography may also become common, due to its potential for truly secure encrypted storage and communications. Thats because its impossible to precisely copy quantum data without violating the laws of physics. Such encryption will be even more important once quantum computers are commonplace because their unique capabilities will also allow them to swiftly crack traditional methods of encryption as mentioned earlier, rendering many currently robust methods insecure and obsolete.
As with many new technologies, it can be challenging to envisage all of the potential uses and problems quantum computing might bring about, which is one reason why business and industry need to become involved in its development early on. Adopting an interdisciplinary approach could yield all kinds of new ideas and applications and hopefully help to build what is ultimately a trusted and ethical technology.
How do you all work together to make it happen? asks Krishnamoorthy. I think for at least the next couple of decades, for chemistry problems, for nuclear theory, etc., well need this hypothetical machine that everyone designs and programs for at the same time, and simulations are going to be crucial to that.
The future of quantum computing will bring enormous changes and challenges to our world. From how we secure our most critical data to unlocking the secrets of our genetic code, its technology that holds the keys to applications, fields and industries weve yet to even imagine.
More:
How researchers are mapping the future of quantum computing, using the tech of today - GeekWire
The vital, the obvious and the hopeful: Tech trends to watch in travel – PhocusWire
Technology and investment tracking service CBInsights recently published a report containing its forecast on innovation and technology developments this coming year.
12 Tech Trends To Watch Closely In 2021is a broad look at what's likely to have an impact on the business world and how users might be impacted.
It does not tackle one sector of industry in particular but is a general overview of movements in the tech world that are expected to gain prominence this year.
There are a number of elements that make the list pertinent to the travel industry: the sector has been hit massively by the coronavirus pandemic, so any pockets of innovation that can help its recovery are likely to be important ones to consider; and the digital world has accelerated far beyond what may have been predicted this time last year.
Listed below are some of the trends noted by CBInsights and how they might strike a chord with the industry's strategies to move forward in 2021.
We're hiring: the "chief prepper officer"
Pandemic-slammed 2020 illustrated an important aspect of running a business: strive for resilience and preparedness.
In travel, brands already understood that events such as volcanoes could have a devastating impact on operations but many conceded (as our New Reality With... series of interviews with industry leaders revealed) that they had never considered quite how disruptive a health emergency could be - at scale and over a prolonged period of time.
Smart companies are likely to be creating roles in their organizations (or lines of responsibility within existing positions) that are dedicated to examining how supply chains, partnership deals and customers are handled in the future.
Quantum computer of solace
The cutting-edge processing techniques behind quantum computing have many positive benefits but there is a serious requirement that is emerging.
Hackers with a decent quantum computer now have the ability to tap a brand's emails, e-commerce interactions, payments and other records as they move between servers and users.
Companies need to match these abilities with encryption methods of their own, many of which are already being developed by the likes of IBM and Microsoft.
Not a nice-to-have but an increasingly core component of the IT department's strategy.
Exclusive clubs
The rapid rise of Clubhouse over recent months indicates that the role of private networks might be a trend that moves beyond the nerdy world of Silicon Valley and investors with (too much) time on their hands.
Facebook and other semi-open social networks aren't to be written off just yet but companies that ignore a desire by people to meet and discuss issues and trends in secure environments, should do so at their peril.
Allowing customers - read: travelers - to congregate in tribes or packs could be the community aspect of a product (pre- and post-usage) that many brands have strived for over the years.
A world full of Valleys
California's Silicon Valley has held sway over the development of technology and innovation for decades, despite the emergence of tech hubs in other cities around the world such as London, Berlin, Tel Aviv and others.
"Tech-forward cities" are rethinking the hub concept from the ground up (literally), with an emphasis on building digital-first infrastructure, transportation and access to capital that ignores the predefined ideas of locations where cool stuff can happen.
This will have a profound impact on the startup world but also in the Research & Development plans for established tech-led companies in travel. Many will need to get involved or be left behind.
Let's get physical
Although so much of the business of travel is booked and coordinated in a digital environment, users still mostly (unless you count the handful of virtual experiences that emerged in 2020) consume the final product in real life.
Travelers fly, drive, stay and experience a destination in-person. But the outbreak of the coronavirus has shifted the thinking about what to do with physical spaces into a new realm.
Health considerations and protocols are having a major impact on how travelers interact with the actual environment that they use or experience - but brands should be thinking about what else can those areas be used for.
Multi-purpose and efficient use of space (hotels as co-working venues or attractions as learning centers, for example), driven by technology to facilitate and manage, could be one of the key drivers of a recovery. Such changes could signal the convergence or local and tourist that destinations and brands have yearned for over decades.
Other important trends to consider:
Original post:
The vital, the obvious and the hopeful: Tech trends to watch in travel - PhocusWire
Experience: With a PhD, the plan is to expand human knowledge – The Guardian
When Zak Romaszko finished his physics degree at the University of Liverpool, a PhD in computing was his obvious next step. I have always been fascinated with computers, says the 27-year-old. I broke my dads PC when I was younger and he was away in the forces, so I had to fix it myself. His interest grew from there, but Romaszkos choice of focus for his research isnt just any type of computing but the cutting-edge quantum variety.
Thought by many to be the next step in the field, and key to solving complex problems in a manageable amount of time, quantum computers use quantum bits rather than the regular bits used by standard computers.
It will be able to solve problems that might take computers millions and billions of years in timescales that are more realistic to humans, says Romaszko. It seemed to be that this would be the way forward in how big calculations would be done in the future.
He found an opportunity to undertake a PhD at the University of Sussex with Prof Winfried Hensinger a subject expert linked to making an ion trap quantum computer, the next step in the computers of the future. Romaszko, who is from Barnoldswick in Lancashire, spent four years on the project as part of the universitys Ion Quantum Technology group, graduating in June 2020. He has now joined a spin-off company founded by Hensinger called Universal Quantum, which is looking to commercialise the technology to make a large-scale quantum computer.
My PhD focused on how we would scale this technology from the level we are at now and get to the point where we need to be to make a truly useful quantum computer, he says.
It sounds like science fiction but Romaszko explains that quantum computers could hold the key to solving some major issues in our world today. People are looking into things like simulation of chemicals and materials and understanding how medicines interact within the body and AI applications, he says.
While it may be difficult to grasp the scale of the computing power at work in the quantum, Romaszko is thrilled to be pushing the boundaries. With a PhD youre basically learning about a field and a very narrow area of science that you just plan to push out a little bit further and expand human knowledge. Its really exciting.
View original post here:
Experience: With a PhD, the plan is to expand human knowledge - The Guardian
IBM and ExxonMobil are building quantum algorithms to solve this giant computing problem – ZDNet
Research teams from energy giant ExxonMobil and IBM have been working together to find quantum solutions to one of the most complex problems of our time: managing the tens of thousands of merchant ships crossing the oceans to deliver the goods that we use every day.
The scientists lifted the lid on the progress that they have made so far and presented the different strategies that they have been using to model maritime routing on existing quantum devices, with the ultimate goal of optimizing the management of fleets.
ExxonMobil was the first energy company to join IBM's Quantum Network in 2019, and has expressed a keen interest in using the technology to explore various applications, ranging from the simulation of new materials to solving optimization problems.
SEE: Research: Why Industrial IoT deployments are on the rise (TechRepublic Premium)
Now, it appears that part of the energy company's work was dedicated to tapping quantum capabilities to calculate journeys that minimize the distance and time traveled by merchant ships across the globe.
On a worldwide scale, the equation is immense intractable, in fact, for classical computers. About 90% of world trade relies on maritime shipping, with more than 50,000 ships, themselves carrying up to 200,000 containers each, moving around every day to transport goods with a total value of $14 trillion.
The more the number of ships and journeys increase, the bigger the problem becomes. As IBM and ExxonMobil's teams put itin a blog post detailing their research: "Logistically speaking, this isn't the 'traveling salesperson problem.'"
While this type of exponentially growing problem can only be solved with simplifications and approximations on classical computers, the challenge is well-suited to quantum technologies. Quantum computers can effectively leverage a special dual state that is taken on by quantum bits, or qubits, to run many calculations at once; meaning that even the largest problems could be resolved in much less time than is possible on a classical computer.
"We wanted to see whether quantum computers could transform how we solve such complex optimization problems and provide more accurate solutions in less computational times," said the researchers.
Although the theory behind the potential of quantum computing is well-established, it remains to be found how quantum devices can be used in practice to solve a real-world problem such as the global routing of merchant ships. In mathematical terms, this means finding the right quantum algorithms that could be used to most effectively model the industry's routing problems, on current or near-term devices.
To do so, IBM and ExxonMobil's teams started with widely-used mathematical representations of the problem, which account for factors such as the routes traveled, the potential movements between port locations and the order in which each location is visited on a particular route. There are many existing ways to formulate the equation, one of which is called the quadratic unconstrained binary optimization (QUBO) technique, and which is often used in classical computer science.
The next question was to find out whether well-known models like QUBO can be solved with quantum algorithms and if so, which solvers work better. Using IBM's Qiskit optimization module, which was released last year toassist developers in building quantum optimization algorithms, the team tested various quantum algorithms labeled with unbeatably exotic names: the Variational Quantum Eigensolver (VQE), the Quantum Approximate Optimization Algorithm (QAOA), and Alternating Direction Method of Multiplier (ADMM) solvers.
After running the algorithms on a simulated quantum device, the researchers found that models like QUBO could effectively be solved by quantum algorithms, and that depending on the size of the problem, some solvers showed better results than others.
In another promising finding, the team said that the experiment showed some degree of inexactness in solving QUBOs is tolerable. "This is a promising feature to handle the inherent noise affecting the quantum algorithms on real devices," said the researchers.
SEE: BMW explores quantum computing to boost supply chain efficiencies
Of course, while the results suggest that quantum algorithms could provide real-world value, the research was carried out on devices that are still technically limited, and the experiments can only remain small-scale. The idea, however, is to develop working algorithms now, to be ready to harness the power of a fully fledged quantum computer when the technology develops.
"As a result of our joint research, ExxonMobil now has a greater understanding of the modelling possibilities, quantum solvers available, and potential alternatives for routing problems in any industry," said the researchers.
What applies to merchant ships, in effect, can also work in other settings. Routing problems are not inherent to the shipping industry, and the scientists confirmed that their findings could easily be transferred to any vehicle optimization problem that has time constraints, such as goods delivery, ride-sharing services or urban waste management.
In fact, ExxonMobil is not the first company to look at ways to use quantum computing techniques to solve optimization problems. Electronics manufacturer OTI Lumionics, for example, has been using QUBO representations to find the most optimal simulation of next-generation OLED materials. Instead of using gate-based quantum computers to run the problem, however, the company has been developing quantum-inspired algorithms to solve calculations on classical Microsoft Azure hardware,with encouraging results.
The mathematical formulas and solution algorithmsare described in detail in the research paper, and the ExxonMobil/IBM team stressed that their use is not restricted. The researchers encouraged their colleagues to reproduce their findings to advance the global field of quantum solvers.
The rest is here:
IBM and ExxonMobil are building quantum algorithms to solve this giant computing problem - ZDNet
Kangaroo Court: Quantum Computing Thinking on the Future – JD Supra
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor.
Quantum computing is a beautiful fusion of quantum physics with computer science. It incorporates some of the most stunning ideas of physics from the twentieth century into an entirely new way of thinking about computation. Quantum computers have the potential to resolve problems of a high complexity and magnitude across many different industries and application, including finance, transportation, chemicals, and cybersecurity. Solving the impossible in a few hours of computing time.
Quantum computing is often in the news: China teleported a qubit from earth to a satellite; Shors algorithm has put our current encryption methods at risk; quantum key distribution will make encryption safe again; Grovers algorithm will speed up data searches. But what does all this really mean? How does it all work?
Todays computers operate in a very straightforward fashion: they manipulate a limited set of data with an algorithm and give you an answer. Quantum computers are more complicated. After multiple units of data are input into qubits, the qubits are manipulated to interact with other qubits, allowing for several calculations to be done simultaneously. Thats where quantum computers are a lot faster than todays machines.
Quantum computers have four fundamental capabilities that differentiate them from todays classical computers:
All computations involve inputting data, manipulating it according to certain rules, and then outputting the final answer. For classical computations, the bit is the basic unit of data. For quantum computation, this unit is the quantum bit usually shortened to qubit.
The basic unit of quantum computing is a qubit. A classical bit is either 0 or 1. If its 0 and we measure it, we get 0. If its 1 and we measure 1, we get 1. In both cases the bit remains unchanged. The standard example is an electrical switch that can be either on or off. The situation is totally different for qubits. Qubits are volatile. A qubit can be in one of an infinite number of states a superposition of both 0 and 1 but when we measure it, as in the classical case, we just get one of two values, either 0 or 1. Qubits can also become entangled. In fact, the act of measurement changes the qubit. When we make a measurement of one of them, it affects the state of the other. Whats more, they interact with other qubits. In fact, these interactions are what make it possible to conduct multiple calculations at once.
Nobody really knows quite how or why entanglement works. It even baffled Einstein, who famously described it as spooky action at a distance. But its key to the power of quantum computers. In a conventional computer, doubling the number of bits doubles its processing power. But thanks to entanglement, adding extra qubits to a quantum machine produces an exponential increase in its number-crunching ability.
These three things superposition, measurement, and entanglement are the key quantum mechanical ideas. Controlling these interactions, however, is very complicated. The volatility of qubits can cause inputs to be lost or altered, which can throw off the accuracy of results. And creating a computer of meaningful scale would require hundreds of thousands of millions of qubits to be connected coherently. The few quantum computers that exist today can handle nowhere near that number. But the good news is were getting very, very close.
Quantum computing and classical computer are not two distinct disciplines. Quantum computing is the more fundamental form of computing anything that can be computed classically can be computed on a quantum computer. The qubit is the basic unit of computation, not the bit. Computation, in its essence, really means quantum computing. A qubit can be represented by the spin of an electron or the polarization of a photon.
In 2019 Google achieved a level of quantum supremacy when they reported the use of a processor with programmable superconducting qubits to create quantum states on 54 qubits, corresponding to a computational state-space of dimension 253(about 1016). This incredible achievement was slightly short of their mission goal for creating quantum states of 72 qubits. What is so special about this number? Classical computers can simulate quantum computers if the quantum computer doesnt have too many qubits, but as the number of qubits increases we reach the point where that is no longer possible.
There are 8 possible three-bit combinations: 000,001, 010, 011, 100, 101, 110, 111. The number 8 comes from 23. There are two choices for the first bit, two for the second and two for the third, and we might multiple these three 2s together. If instead of bits we switch to qubits, each of these 8 three-bit strings is associated with a basis vector, so the vector space is 8-dimensional. If we have 72 qubits, the number of basis elements is 2. This is about 4,000,000,000,000,000,000,000. It is a large number and is considered to be the point at which classical computers cannot simulate quantum computers. Once quantum computers have more than 72 or so qubits we truly enter the age of quantum supremacy when quantum computers can do computations that are beyond the ability of any classical computer.
To provide a little more perspective, lets consider a machine with 300 qubits. This doesnt seem an unreasonable number of the not too distant future. But 2300 is an enormous number. Its more than the number of elementary particles in the known universe. A computation using 300 qubits would be working with 2300 basis elements.
Some calculations required for the effective simulation of real-life scenarios are simply beyond the capability of classical computers whats known as intractable problems. Quantum computers, with their huge computational power, are ideally suited to solving these problems. Indeed, some problems, like factoring, are hard on a classical computer, but are easy on a quantum computer. This creates a world of opportunities, across almost every aspect of modern life.
Healthcare: classical computers are limited in terms of size and complexity of molecules they can simulate and compare (an essential process of early drug development). Quantum computers will allow much larger molecules to be simulated. At the same time, researchers will be able to model and simulate interactions between drugs and all 20,000+ proteins encoded in the human genome, leading to greater advancements in pharmacology.
Finance: one potential application is algorithmic trading using complex algorithms to automatically trigger share dealings based on a wide variety of market variables. The advantages, especially for high-volume transactions, are significant. Another application is fraud detection. Like diagnostics in healthcare, fraud detection is reliant upon pattern recognition. Quantum computers could deliver a significant improvement in machine learning capabilities; dramatically reducing the time taken to train a neural network and improving the detection rate.
Logistics: Improved data analysis and modelling will enable a wide range of industries to optimize workflows associated with transport, logistics and supply-chain management. The calculation and recalculation of optimal routes could impact on applications as diverse as traffic management, fleet operations, air traffic control, freight and distribution.
It is, of course, impossible to predict the long-term impact of quantum computing with any accuracy. Quantum computing is now in its infancy, and the comparison to the first computers seems apt. The machines that have been constructed so far tend to be large and not very powerful, and they often involve superconductors that need cooled to extremely low temperatures. To minimize the interaction of quantum computers with the environment, they are always protected from light and heat. They are shieled against electromagnetic radiation, and they are cooled. One thing that can happen in cold places is that certain materials become superconductors they lose all electrical resistance and superconductors have quantum properties that can be exploited.
Many countries are experimenting with small quantum networks using optic fiber. There is the potential of connecting these via satellite and being able to form a worldwide quantum network. This work is of great interest to financial institutions. One early impressive result involves a Chinese satellite that is devoted to quantum experiments. Its named Micius after a Chinese philosopher who did work in optics. A team in China connected to a team in Austria the first time that intercontinental quantum key distribution (QKD) had been achieved. Once the connection was secured, the teams sent pictures to one another. The Chinese team sent the Austrians a picture of Micius, and the Austrians sent a picture of Schrodinger to the Chinese.
To actually make practical quantum computers you need to solve a number of problems, the most serious being decoherence the problem of your qubit interacting with something from the environment that is not part of the computation. You need to set a qubit to an initial state and keep it in that state until you need to use it. Their quantum state is extremely fragile. The slightest vibration or change in temperature disturbances known as noise in quantum-speak can cause them to tumble out of superposition before their job has been properly done. Thats why researchers are doing the best to protect qubits from the outside world in supercooled fridges and vacuum chambers.
Alan Turing is one of the fathers of the theory of computation. In his landmark paper of 1936 he carefully thought about computation. He considered what humans did as they performed computations and broke it down to its most elemental level. He showed that a simple theoretical machine, which we now call a Turing machine, could carry out any algorithm. But remember, Turing was analyzing computation based on what humans do. With quantum computation the focus changes from how humans compute to how the universe computes. Therefore, we should think of quantum computation as not a new type of computation but as the discovery of the true nature of computation.
See the original post here:
Kangaroo Court: Quantum Computing Thinking on the Future - JD Supra
New EU Consortium shaping the future of Quantum Computing USA – PRNewswire
Europe has always been excellent in academic research, but over the past few decades commercializing research projects has been slow compared to international competition. This is starting to change with quantum technologies. As one of the largest efforts in Europe and worldwide, Germany announced 2 Billion funding into quantum programs in June 2020, from which 120 Million are invested in this current round of research grants.
Today, IQM announced a Quantum project consortium that includes Europe's leading startups (ParityQC, IQM), industry leaders (Infineon Technologies), research centers (Forschungszentrum Jlich),supercomputing centers (Leibniz Supercomputing Centre), and academia (Freie Universitt Berlin) has been awarded 12.4 Million from the German Ministry of Education and Research (BMBF) (Announcement in German).
The scope of the project is to accelerate commercialization through an innovative co-design concept. This project focuses on application-specific quantum processors, which have the potential to create a fastlane to quantum advantage. The digital-analog concept used to operate the processors will further lay the foundation for commercially viable quantum computers. This project will run for four years and aims to develop a 54-qubit quantum processor.
The project is intended to support the European FET Flagship project EU OpenSuperQ, announced in 2018 which is aimed at designing, building, and operating a quantum information processing system of up to 100 qubits. Deploying digital-analog quantum computing, this consortium adds a new angle to the OpenSuperQ project and widens its scope. With efforts from Munich, Berlin and Jlich, as well as Parity QC from Austria, the project builds bridges and seamlessly integrates into the European quantum landscape.
"The grant from the Federal Ministry of Education and Research of Germanyis a huge recognition of our unique co-design approach for quantum computers. Last year when we established our office in Munich, this was one of our key objectives. The concept allows us to become a system integrator for full-stack quantum computers by bringing together all the relevant players. As Europe's leading startup in quantum technologies, this gives us confidence to further invest in Germany and other European countries" said Dr. Jan Goetz, CEO of IQM Quantum Computers.
As European technology leader, Germany is taking several steps to lead the quantum technology race. An important role of such leadership is to bring together the European startups, industry, research and academic partners. This project will give the quantum landscape in Germany an accelerated push and will create a vibrant quantum ecosystem in the region for the future.
Additional Quotes:
"DAQC is an important project for Germany and Europe. It enables us to take a leading role in the area of quantum technologies. It also allows us to bring quantum computing into one of the prime academic supercomputing centres to more effectively work on the important integration of high-performance computing and quantum computing. We are looking forward to a successful collaboration," said Prof. DrMartinSchulz, Member of the Board of Directors, Leibniz Supercomputing Centre (LRZ).
"The path towards scalable and fully programmable quantum computing will be the parallelizability of gates and building with reduced complexity in order to ensure manageable qubit control. Our ParityQC architecture is the blueprint for a fully parallelizable quantum computer, which comes with the associated ParityOS operating system. With the team of extraordinary members of the DAQC consortium this will allow us to tackle the most pressing and complex industry-relevant optimization problems." saidMagdalena Hauser & Wolfgang Lechner, CEOs & Co-founder ParityQC
"We are looking forward to exploring and realizing a tight connection between hardware and applications, and having DAQC quantum computers as a compatible alternative within the OpenSuperQ laboratory. Collaborations like this across different states, and including both public and private partners, have the right momentum to move quantum computing in Germany forward." saidProf. Frank Wilhelm-Mauch, Director, Institute for Quantum Computing Analytics, Forschungszentrum Jlich
"At Infineon, we are looking forward to collaborating with top-class scientists and leading start-ups in the field of quantum computing in Europe. We must act now if we in Germany and Europe do not want to become solely dependent on American or Asian know-how in this future technology area. We are very glad to be part of this highly innovative project and happy to contribute with our expertise in scaling and manufacturing processes." saidDr.Sebastian Luber, Senior Director Technology & Innovation, Infineon Technologies AG
"This is a hugely exciting project. It is a chance of Europe and Germany to catch up in the development of superconducting quantum computers. I am looking forward to adventures on understanding how such machines can be certified in their precise functioning." said Prof.Jens Eisert, Professor of Quantum Physics, Freie Universitt Berlin
About IQM Quantum Computers:
IQM is the European leader in superconducting quantum computers, headquartered in Espoo, Finland. Since its inception in 2018, IQM has grown to 80+ employees and has also established a subsidiary in Munich, Germany, to lead the co-design approach. IQM delivers on-premises quantum computers for research laboratories and supercomputing centers and provides complete access to its hardware. For industrial customers, IQM delivers quantum advantage through a unique application-specific co-design approach. IQM has raised 71 Million from VCs firms and also public grants and is also building Finland's first quantum computer.
For more information, visit http://www.meetiqm.com.
Registered offices:
IQM Finland OyKeilaranta 1902150 EspooFINLANDwww.meetiqm.com
IQM GERMANY GmbHNymphenburgerstr. 8680636 MnchenGermany
IQM: Facts and Figures
Founders:
Media Contact: Raghunath Koduvayur, Head of Marketing and Communications, [emailprotected], +358504876509
Photo - https://mma.prnewswire.com/media/1437806/IQM_Quantum_Computers_Founders.jpg Photo - https://mma.prnewswire.com/media/1437807/IQM_Quantum_computer_design.jpg Logo - https://mma.prnewswire.com/media/1121497/IQM_Logo.jpg
SOURCE IQM Finland Oy
Read more:
New EU Consortium shaping the future of Quantum Computing USA - PRNewswire
2020 Quantum Communications in Space Research Report: Quantum Communications are Expected to Solve the Problem of Secure communications First on…
Dublin, Feb. 11, 2021 (GLOBE NEWSWIRE) -- The "Quantum Communications in Space" report has been added to ResearchAndMarkets.com's offering.
The modern world more and more relies on information exchange using data transfer technologies.
Private and secure communications are fundamental for the Internet, national defence and e-commerce, thus justifying the need for a secure network with the global protection of data. Information exchange through existing data transfer channels is becoming prone to hacker attacks causing problems on an international scale, such as interference with democratic elections, etc.
In reality the scale of the "hacking" problem is continual, in 2019 British companies were reportedly hit by about 5,000 "ransomware" attacks that paid out more than $200 million to cyber criminals [1]. During the first half of 2020, $144.2 million has already been lost in 11 of the biggest ransomware attacks [2]. Communications privacy is therefore of great concern at present.
The reasons for the growing privacy concerns are [3]: the planned increase of secure information (requiring encryption) data traffic rates from the current 10 to future 100 Gbit/s; annual increases in data traffic of 20-25% and the application of fibre optic cables not only for mainstream network lines by also for the "final mile" to the end-user. These developments are accompanied by [3]: growing software vulnerabilities; more powerful computational resources available to hackers at lower costs; possible quantum computer applications for encryption cracking and the poor administration of computer networks.
Conventional public key cryptography relies on the computational intractability of certain mathematical functions.
Applied conventional encryption algorithms (DH, RSA, ECDSA TLS/SSL, HTTPS, IPsec, X.509) are good in that there is currently no way to find the key (with a sufficient length) for any acceptable time. Nevertheless, in principle it is possible, and there are no guarantees against the discovery in the future of a fast factorization algorithm for classical computers or from the implementation of already known algorithms on a quantum computer, which will make conventional encryption "hacking" possible. Another "hacking" strategy involves original data substitution. A final vulnerability comes from encryption keys being potentially stolen. Hence, the demand exists for a truly reliable and convenient encryption system.
Quantum communications are expected to solve the problem of secure communications first on international and national scales and then down to the personal level.
Quantum communication is a field of applied quantum physics closely related to quantum information processing and quantum teleportation [4]. It's most interesting application is protecting information channels against eavesdropping by means of quantum cryptography [4].
Quantum communications are considered to be secure because any tinkering with them is detectable. Thus, quantum communications are only trustful and safe in the knowledge that any eavesdropping would leave its mark.
By quantum communications two parties can communicate secretly by sharing a quantum encryption key encoded in the polarization of a string of photons.
This quantum key distribution (QKD) idea was proposed in the mid-1980s [5]. QKD theoretically offers a radical new way of an information secure solution to the key exchange problem, ensured by the laws of quantum physics. In particular, QKD allows two distant users, who do not share a long secret key initially, to generate a common, random string of secret bits, called a secret key.
Using the one-time pad encryption, this key has been proven to be secure [6] to encrypt/decrypt a message, which can then be transmitted over a standard communication channel. The information is encoded in the superposition states of physical carriers at a single-quantum level, where photons, the fastest traveling qubits, are usually used. Any eavesdropper on the quantum channel attempting to gain information of the key will inevitably introduce disturbance to the system that can be detected by the communicating users.
Key Topics Covered:
1. INTRODUCTION
2. Quantum Experiments at a Space Scale (QUESS)2.1. European root of the Chinese project 2.2. Chinese Counterpart2.3. The QUESS Mission set-up 2.3.1. Spacecraft 2.3.2. Ground stations 2.3.3. Project budget 2.4. International cooperation2.5. Results2.6. Tiangong-2 Space Lab QKD
3. Future plans
4. Comparison to alternatives4.1. Small Photon-Entangling Quantum System4.2. Hyperentangled Photon Pairs 4.3. QEYSSat 4.4. Reflector satellites 4.5. GEO satellite communications 4.6. Airborne4.7. Ground4.7.1. Moscow quantum communications line4.7.2. Telephone & optical line communications
5. CONCLUSIONS
REFERENCES
Companies Mentioned
For more information about this report visit https://www.researchandmarkets.com/r/li9vd4
Originally posted here:
2020 Quantum Communications in Space Research Report: Quantum Communications are Expected to Solve the Problem of Secure communications First on...
Quantum Computers May Steal Bitcoin by Deriving Private Keys once Advanced Enough in 5-30 Years, Experts Claim – Crowdfund Insider
John Smith, who has been regularly keeping up with computer science, quantum computing, and cryptocurrency-related developments, claims that the future of crypto is quantum-resistant, meaning we must build systems that can protect themselves against the potential attack from quantum computers (QCs) when they become powerful enough to present a challenge to digital asset networks.
While discussing what the future threat to Bitcoin (BTC) from Quantum Computing might be, and how big of a deal it really is, Smith claims that the threat is that quantum computers will eventually be able to break Bitcoins current digital signatures, which could render the network insecure and cause it to lose value.
He goes on to question why there isnt already a solution as trivial as simply upgrading the signatures? He explains that this might not be possible due to the decentralized nature of Bitcoin and other large crypto-asset networks such as Ethereum (ETH).
While discussing how long until someone actually develops a quantum computer that can steal BTC by quickly deriving private keys from their associated public keys, Smith reveals that serious estimates range somewhere from 5 to over 30 years, with the median expert opinion being around 15 years.
Smooth added:
Banks/govts/etc. will soon upgrade to quantum-resistant cryptography to secure themselves going forward. Bitcoin, however, with large financial incentives for attacking it and no central authority that can upgrade *for* users, faces a unique set of challenges.
Going on to mention the main challenges, Smith notes that we can separate vulnerable BTC into three classes, including lost coins (which are estimated to be several million), non-lost coins residing in reused/taproot/otherwise-vulnerable addresses, and coins in the mempool (i.e., being transacted).
Beginning with lost coins, why are they even an issue? Because its possible to steal a huge number all at once and then selling them in mass quantities which could tank the entire crypto market. He added that if that seems imminent, the market could preemptively tank. He also mentioned that an attacker may profit greatly by provoking either of the above and shorting BTC.
While proposing potential solutions, Smith suggests preemptively burning lost coins via soft fork (or backwards compatible upgrade). He clarifies that just how well this works will depend on:
He further noted:
Another potential way around the problem of millions of lost BTC is if a benevolent party were to steal & then altruistically burn them. Not clear how realistic this is, given the financial incentives involved & who the parties likely to have this capability would be.
He added:
Moving on why are non-lost coins with vulnerable public keys an issue? This is self-evident. The primary threat to the wealth of BTC holders is their BTC being stolen. And as with lost coins, a related threat is that the market starts to fear such an attack is possible.
He also mentioned that another solution could be that Bitcoin adds a quantum-resistant signature and holders proactively migrate. He points out that how well this all works will depend on:
While discussing the vulnerability of coins in the mempool, Smith mentioned that it could complicate migration to quantum-resistant addresses *after* large QCs are built or it could greatly magnify the threat posed by an unanticipated black swan advance in QC.
While proposing other solutions, Smith noted:
A commit-reveal tx scheme can be used to migrate coins without mempool security. This gets around the vulnerability of a users old public key by adding an extra encryption/decryption step based on their new quantum-resistant key but w/ crucial limitations.
He added:
Considerations w/ commit-reveal migration [are that] its not foolproof unless a user starts with their coins stored in a non-vulnerable address, because attackers can steal any vulnerable coins simply by beating the original owner to the punch.
Considerations with commit-reveal migration are also that commit transactions introduce technical hurdles (vs. regular txs) & increase the load on the network. Neither of these are insurmountable by any means, but they suggest that this method should not be relied upon too heavily, Smith claims.
He also noted that how well the commit-reveal transaction type works will depend on:
He added:
One potential way around the network overhead & just plain hassle of commit-reveal migration would be if a highly efficient quantum-resistant zero-knowledge proof were discovered. Current QR ZK algorithms are far too large to use in Bitcoin, but that could change. Worth noting.
While sharing other potential solutions, Smith noted that theres the tank the attack & rebuild.
He pointed out that Bitcoins network effects are massive, so it is challenging to accurately estimate or predict what the crypto ecosystem will look like in the future, but the potential economic disruption of BTC failing may incentivize extraordinary measures to save the network.
He added:
Bitcoins ability to tank a quantum-computing-related market crash will depend on [whether theres] another chain capable of replacing BTC as the main crypto store of value [and whether] BTC [can] avoid a mining death spiral? Also, how far will stakeholders go to ensure the network survives & rebounds?
Smith also mentioned that for people or institutions holding Bitcoin, some good measures may be purchasing insurance, and/or hedging BTC exposure with an asset that would be expected to increase in value in the case of an attack.
Originally posted here:
Quantum Computers May Steal Bitcoin by Deriving Private Keys once Advanced Enough in 5-30 Years, Experts Claim - Crowdfund Insider
A Swiss company claims it used quantum computers to find weakness in encryption – HT Tech
Security experts have long worried that advances in quantum computing could eventually make it easier to break encryption that protects the privacy of peoples data. Thats because these sophisticated machines can perform calculations at speeds impossible for conventional computers, potentially enabling them to crack codes previously thought indecipherable.
Now, a Swiss technology company says it has made a breakthrough by using quantum computers to uncover vulnerabilities in commonly used encryption. The company believes its found a security weakness that could jeopardize the confidentiality of the worlds internet data, banking transactions and emails.
Terra Quantum AG said its discovery upends the current understanding of what constitutes unbreakable encryption and could have major implications for the worlds leading technology companies, such as Alphabet Inc.s Google, Microsoft Corp., and International Business Machines Corp.
Don't miss: ProtonMail, Threema, Tresorit and Tutanota warn EU of risks of weakening encryption
But some other security experts said they arent nearly ready to declare a major breakthrough, at least not until the company publishes the full details of its research. If true, this would be a huge result, said Brent Waters, a computer science professor who specialises in cryptography at the University of Texas at Austin. It seems somewhat unlikely on the face of it. However, it is pretty hard for experts to weigh in on something without it being published.
IBM spokesman Christopher Sciacca said his company has known the risks for 20 years and is working on its own solutions to address the issue of post-quantum security. This is why the National Institute of Science & Technology (NIST) has been hosting a challenge to develop a new quantum safe crypto standard, he said in an email. IBM has several proposals for this new standard in the final round, which is expected in a few years.
Brian LaMacchia, distinguished engineer at Microsoft, said company cryptographers are collaborating with the global cryptographic community to prepare customers and data centers for a quantum future. Preparing for security in a post-quantum world is important not only to protect and secure data in the future but also to ensure that future quantum computers are not a threat to the long-term security of todays information.
Google didnt reply to a message seeking comment.
Terra Quantum AG has a team of about 80 quantum physicists, cryptographers and mathematicians, who are based in Switzerland, Russia, Finland and the US What currently is viewed as being post-quantum secure is not post-quantum secure, said Markus Pflitsch, chief executive officer and founder of Terra Quantum, in an interview. We can show and have proven that it isnt secure and is hackable.
Also read: Heres how an encrypted, locked Android and Apple phone gets bypassed
Pflitsch founded the company in 2019. Hes a former finance executive who began his career as a research scientist at CERN, the European Organization for Nuclear Research. Terra Quantums research is led by two chief technology officers Gordey Lesovik, head of the Laboratory of Quantum Information Technology at the Moscow Institute of Physics and Technology, and Valerii Vinokur, a Chicago-based physicist who in 2020 won the Fritz London Memorial Prize for his work in condensed matter and theoretical physics.
The company said that its research found vulnerabilities that affect symmetric encryption ciphers, including the Advanced Encryption Standard, or AES, which is widely used to secure data transmitted over the internet and to encrypt files. Using a method known as quantum annealing, the company said its research found that even the strongest versions of AES encryption may be decipherable by quantum computers that could be available in a few years from now.
Vinokur said in an interview that Terra Quantums team made the discovery after figuring out how to invert whats called a hash function, a mathematical algorithm that converts a message or portion of data into a numerical value. The research will show that what was once believed unbreakable doesnt exist anymore, Vinokur said, adding that the finding means a thousand other ways can be found soon.
Read more: Chinese scientists make world's first light-based quantum computer: Report
The company, which is backed by the Zurich-based venture capital firm Lakestar LP, has developed a new encryption protocol that it says cant be broken by quantum computers. Vinokur said the new protocol utilizes a method known as quantum key distribution.
Terra Quantum is currently pursuing a patent for the new protocol. But the company will make it available for free, according to Pflitsch. We will open up access to our protocol to make sure we have a safe and secure environment, said Pflitsch. We feel obliged to share it with the world and the quantum community.
The US government, like China, has made research in quantum computing research an economic and national security priority, saying that the world is on the cusp of what it calls a new quantum revolution. In addition, technology companies including Google, Microsoft, and IBM have made large investments in quantum computing in recent years.
Go here to see the original:
A Swiss company claims it used quantum computers to find weakness in encryption - HT Tech
Analysis: Opportunities and Restraint of the Quantum Computing Market KSU | The Sentinel Newspaper – KSU | The Sentinel Newspaper
The globalquantum computing marketis valued at $667.3 million by 2027, surging from $88.2 million in 2019 at a noteworthy CAGR of 30.0%.
Impact Analysis of COVID-19 on the Quantum Computing Market
The global market for quantum computing services is projected to experience considerable impact due to the emergence of the Coronavirus disease (COVID-19). In the fight against COVID-19, quantum computing platform has joined the force of disruptive technologies at the service to better control the global outbreak. The current coronavirus crisis provides a valuable stage for zooming in the real potential applications of quantum computing in highly-impacted and complex situations. The esteemed companies operating in global quantum computing market are trying their best to provide integrated platform amidst the shutdown. For instance, in September 2020, IBM, an American multinational technology and consulting company, announced to conduct IBM Quantum Summit 2020 to discover chemical compounds that could contribute to the fight against COVID-19 pandemic.
On the other hand, quantum computing is very helpful in the discovery of lot of drugs which is a computationally-intensive task. Quantum computing can analyze the the interaction between biomolecules, and this can be helpful in tackling infectious agents such as coronavirus and others. There can be no other better way than to model the problem on a computer and conduct extensive research on the same. For instance in March, D-Wave announced that they are offering quantum computers free to anyone working on the coronavirus crisis for research and other work related to covid19. Therefore, there are many companies expirenced upsurge in growth, throughout the pandemic period. These type of factors may lead lucrative opportunities for the investors in the forecast period.
Quantum Computing Market Analysis:
The enormous growth of the global quantum computing market is mainly attributed to the increasing integration of quantum computing platforms in healthcare. Companies such as 1QB Information Technologies Inc., QxBranch, LLC, D-Wave Systems Inc. are working in the field of material simulation to enhance the accessibility, availability, and usability of quantum computers in material simulation applications. In addition, these players are following strategic collaborations, business expansion and technological innovations to acquire the largest share in the global industry. For instance, in October 2020, Cambridge Quantum Computing announced that they are opening Ph.D. internships with multinational pharmaceutical companies for drug designing through quantum algorithms. These key factors may lead to a surge in the demand for quantum computing services in the global market.
Lack of knowledge and skills may create a negative impact on global quantum computing services throughout the analysis timeframe. This type of factors may hamper the quantum computing market growth during the analysis period.
The global quantum computing industry is growing extensively across various fields, but fastest growing adoption of quantum computing is in agriculture. Quantum computing offers software solutions for agriculture in large businesses and startups all over the world to develop innovative solutions in agriculture. For instance Quantum, a software and data science company launched a software named AgriTech, ths software helps farmers to monitor crops, agricultural fields and it will respond quickly to all the issues related to agriculture. These factors may provide lucrative opportunities for the global quantum computing market, in the coming years.
The consulting solutions sub-segment of the quantum computing market will have the fastest growth and it is projected to surpass $354.0 million by 2027, with an increase from $37.1 million in 2019. This is mainly attributed to its application in blind quantum computing and quantum cryptography playing a major role to secure cloud computing services. Moreover, the consulting solutions segment for quantum computing technologies covers broad range of end-user industries including automotive, space & defense, chemicals, healthcare, and energy & power, and others.
Moreover systems offering sub-segment type will have a significant market share and is projected to grow at a CAGR of 26.7% by registering a revenue of $313.3 million by 2027. This growth is mainly attributed to many government authorities across the developed as well as developing economies that are heavily investing into quantum computing technologies. For instance, in February 2020, the Indian government announces that they are going to invest $1120 million in quantum computing research. This type of government support and scheme is expected to flourish the research for technology under the National Mission of Quantum Technology and Application project. Such government support may bolster the segmental growth, in the analysis period.
Machine learning sub-segment for the quantum computing industry shall have rapid growth and it is anticipated to generate a revenue of $236.9 million by 2027, during the forecast period. This growth is mainly attributed to higher applications of quantum computing in the broad range of areas such as drug discovery, multi-omics data integration, and many among others. These factors may offer lucrative opportunities for the segment, during the forecast timeframe.
The banking and finance sub-segment will be the fastest-growing segment and it is expected to register a revenue of $159.2 million by 2027, throughout the analysis timeframe. The enormously growing quantum computing in the finance sector across the globe has advanced with developments in smartphone technology and computer processing. In addition, the quantum computing platform helps speed up the transactional activities in cost-effective ways. Hence, the quantum computing platform is extensively attracting the interest of BFSI firms that are seeking to boost their data speed, trade, and transactions. Such factors are projected to upsurge the growth of the segment, during the projected timeframe.
The quantum computing market for the Asia-Pacific region will be a rapidly-growing market and it has generated a revenue of $18.1 million in 2019 and is further projected to reach up to $150.3 million by 2027. The demand for quantum computing services is surging in the Asia pacific region, specifically because of the strategic collaboration and development. For instance, in December 2019, D-Wave Systems came in a partnership with Japans NEC for building of quantum apps and hybrid HPC for exploring the capabilities NECs high-performance computers and D-Waves quantum systems. Such partnerships may further surge the growth of market, during the analysis timeframe.
The Europe quantum computing market shall have a dominating market share and is anticipated to reach up to $ 221.2 million by the end of 2027 due to its higher application in fields such as development and discovery of new drugs, cryptography, cyber security, defense sector, among others. In addition, the use of quantum computing will also have positive consequences in development of AI as well as in machine learning. For instance, in July 2019, Utimaco GmbH, software & hardware provider came in partnership with ISARA to utilize post quantum cryptography; this partnership will help their users to have secured and encrypted communication that cannot be decrypted by other computers. These initiatives may create a positive impact on the Asia-pacific quantum computing market, during the forecast period.
Key Market Players
Porters Five Forces Analysis for Quantum Computing Market:
About Us:Research Dive is a market research firm based in Pune, India. Maintaining the integrity and authenticity of the services, the firm provides the services that are solely based on its exclusive data model, compelled by the 360-degree research methodology, which guarantees comprehensive and accurate analysis. With unprecedented access to several paid data resources, team of expert researchers, and strict work ethic, the firm offers insights that are extremely precise and reliable. Scrutinizing relevant news releases, government publications, decades of trade data, and technical & white papers, Research dive deliver the required services to its clients well within the required timeframe. Its expertise is focused on examining niche markets, targeting its major driving factors, and spotting threatening hindrances. Complementarily, it also has a seamless collaboration with the major industry aficionado that further offers its research an edge.
Contact us:Mr. Abhishek PaliwalResearch Dive30 Wall St. 8th Floor, New YorkNY 10005 (P)+ 91 (788) 802-9103 (India)+1 (917) 444-1262 (US)Toll Free: +1-888-961-4454E-mail: support@researchdive.comLinkedIn:https://www.linkedin.com/company/research-dive/Twitter:https://twitter.com/ResearchDiveFacebook:https://www.facebook.com/Research-Dive-1385542314927521Blog:https://www.researchdive.com/blogFollow us:https://marketinsightinformation.blogspot.com/
Continued here:
Analysis: Opportunities and Restraint of the Quantum Computing Market KSU | The Sentinel Newspaper - KSU | The Sentinel Newspaper