Most sensitive web transactions are protected by public-key cryptography, a type of encryption that lets computers share information securely without first agreeing on a secret encryption key.

Public-key encryption protocols are complicated, and in computer networks, theyre executed by software. But that wont work in the internet of things, an envisioned network that would connect many different sensors embedded in vehicles, appliances, civil structures, manufacturing equipment, and even livestock tags to online servers. Embedded sensors that need to maximize battery life cant afford the energy and memory space that software execution of encryption protocols would require.

MIT researchers have built a new chip, hardwired to perform public-key encryption, that consumes only 1/400 as much power as software execution of the same protocols would. It also uses about 1/10 as much memory and executes 500 times faster. The researchers describe the chip in a paper theyre presenting this week at the International Solid-State Circuits Conference.

Like most modern public-key encryption systems, the researchers chip uses a technique called elliptic-curve encryption. As its name suggests, elliptic-curve encryption relies on a type of mathematical function called an elliptic curve. In the past, researchers including the same MIT group that developed the new chip have built chips hardwired to handle specific elliptic curves or families of curves. What sets the new chip apart is that it is designed to handle any elliptic curve.

Cryptographers are coming up with curves with different properties, and they use different primes, says Utsav Banerjee, an MIT graduate student in electrical engineering and computer science and first author on the paper. There is a lot of debate regarding which curve is secure and which curve to use, and there are multiple governments with different standards coming up that talk about different curves. With this chip, we can support all of them, and hopefully, when new curves come along in the future, we can support them as well.

Joining Banerjee on the paper are his thesis advisor, Anantha Chandrakasan, dean of MITs School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science; Arvind, the Johnson Professor in Computer Science Engineering; and Andrew Wright and Chiraag Juvekar, both graduate students in electrical engineering and computer science.

Modular reasoning

To create their general-purpose elliptic-curve chip, the researchers decomposed the cryptographic computation into its constituent parts. Elliptic-curve cryptography relies on modular arithmetic, meaning that the values of the numbers that figure into the computation are assigned a limit. If the result of some calculation exceeds that limit, its divided by the limit, and only the remainder is preserved. The secrecy of the limit helps ensure cryptographic security.

One of the computations to which the MIT chip devotes a special-purpose circuit is thus modular multiplication. But because elliptic-curve cryptography deals with large numbers, the chips modular multiplier is massive. Typically, a modular multiplier might be able to handle numbers with 16 or maybe 32 binary digits, or bits. For larger computations, the results of discrete 16- or 32-bit multiplications would be integrated by additional logic circuits.

The MIT chips modular multiplier can handle 256-bit numbers, however. Eliminating the extra circuitry for integrating smaller computations both reduces the chips energy consumption and increases its speed.

Another key operation in elliptic-curve cryptography is called inversion. Inversion is the calculation of a number that, when multiplied by a given number, will yield a modular product of 1. In previous chips dedicated to elliptic-curve cryptography, inversions were performed by the same circuits that did the modular multiplications, saving chip space. But the MIT researchers instead equipped their chip with a special-purpose inverter circuit. This increases the chips surface area by 10 percent, but it cuts the power consumption in half.

The most common encryption protocol to use elliptic-curve cryptography is called the datagram transport layer security protocol, which governs not only the elliptic-curve computations themselves but also the formatting, transmission, and handling of the encrypted data. In fact, the entire protocol is hardwired into the MIT researchers chip, which dramatically reduces the amount of memory required for its execution.

The chip also features a general-purpose processor that can be used in conjunction with the dedicated circuitry to execute other elliptic-curve-based security protocols. But it can be powered down when not in use, so it doesnt compromise the chips energy efficiency.

They move a certain amount of functionality that used to be in software into hardware, says Xiaolin Lu, director of the internet of things (IOT) lab at Texas Instruments. That has advantages that include power and cost. But from an industrial IOT perspective, its also a more user-friendly implementation. For whoever writes the software, its much simpler.

Original post:

Energy-efficient encryption for the internet of things | MIT News

- 'Without Encryption, We Will Lose All Privacy': Snowden ... - October 18th, 2019
- Security pros reiterate warning against encryption backdoors - October 18th, 2019
- Encryption - servicepro.wiki - October 18th, 2019
- Mozy Encryption - October 18th, 2019
- Optical Encryption Market Size, Share, Trends and Forecast ... - October 18th, 2019
- MySQL Enterprise Transparent Data Encryption (TDE) - October 18th, 2019
- What is Encryption? - Definition from WhatIs.com - October 17th, 2019
- How to Set Up BitLocker Encryption on Windows - October 2nd, 2019
- Encryption: What It Is, and How It Works for You | Tom's Guide - October 2nd, 2019
- Security Encryption Systems | HowStuffWorks - October 2nd, 2019
- What is The Difference Between Hashing and Encrypting - October 2nd, 2019
- How Encryption Works | HowStuffWorks - September 5th, 2019
- encryption - How secure is AES-256? - Cryptography Stack ... - June 2nd, 2019
- The World's Email Encryption Software Relies on One Guy, Who ... - May 5th, 2019
- Encryption breakthrough could keep prying eyes away from your ... - May 5th, 2019
- What Is Data Encryption? Definition, Best Practices & More ... - May 1st, 2019
- IronClad Encryption Partners with Data443 Risk Mitigation ... - April 30th, 2019
- What Is Encryption? An Overview of Modern Encryption ... - April 30th, 2019
- Symmetric vs. Asymmetric Encryption What are differences? - April 29th, 2019
- Difference Between Hashing and Encryption - ssl2buy.com - April 29th, 2019
- What is Advanced Encryption Standard (AES)? - Definition ... - April 29th, 2019
- How to Encrypt Your Wireless Network - Lifewire - April 29th, 2019
- After Paris, Encryption Will Be a Key Issue in the 2016 ... - April 22nd, 2019
- Email encryption - Wikipedia - April 8th, 2019
- What is Encryption, and Why Are People Afraid of It? - April 8th, 2019
- Data encryption | cryptology | Britannica.com - April 8th, 2019
- How to Enable Full-Disk Encryption on Windows 10 - April 1st, 2019
- After Paris, Encryption Will Be a Key Issue in the 2016 Race - March 27th, 2019
- Does Encryption Really Help ISIS? Heres What You Need to ... - March 27th, 2019
- AES and RSA Encryption Explained - March 27th, 2019
- Encryption: What it is and why its important - Norton - March 23rd, 2019
- Email encryption in transit - Gmail Help - March 21st, 2019
- Authenticated encryption - Wikipedia - March 19th, 2019
- Email Encryption Options for MDaemon Email Server - March 14th, 2019
- How to Encrypt Files on Windows - Tutorial - Toms Guide - March 6th, 2019
- Encryption, Key Management - bank information security - March 5th, 2019
- Which Types of Encryption are Most Secure? - February 7th, 2019
- JSON Object Signing and Encryption (JOSE) - February 4th, 2019
- What Is Encryption, and How Does It Work? - January 26th, 2019
- The Pitfalls of Facebook Merging Messenger, Instagram, and ... - January 26th, 2019
- Encryption: Avoiding the Pitfalls That Can Lead to Breaches - January 14th, 2019
- Encryption | Information Technology Services - December 31st, 2018
- Encryption - Investopedia - December 16th, 2018
- How to Protect Data at Rest with Amazon EC2 Instance Store ... - December 9th, 2018
- Next Generation Encryption - blogs.cisco.com - December 4th, 2018
- 3 Different Data Encryption Methods - DataShield blog - November 22nd, 2018
- Security and encryption | Documentation | Turtl - November 18th, 2018
- Encryption | General Data Protection Regulation (GDPR) - November 16th, 2018
- Using Encryption and Authentication Correctly (for PHP ... - November 13th, 2018
- Encryption | SANS Security Awareness - November 9th, 2018
- Types of Encryption | Office of Information Technology - November 5th, 2018
- Use Your own Encryption Keys with S3s Server-Side ... - October 29th, 2018
- What is Tokenization vs Encryption - Benefits & Uses Cases ... - October 12th, 2018
- Device Encryption | it.ucsf.edu - October 12th, 2018
- 5 Common Encryption Algorithms and the Unbreakables of the Future - September 15th, 2018
- Top 5 best encryption software tools of 2018 | TechRadar - August 26th, 2018
- New EBS Encryption for Additional Data Protection | AWS ... - August 22nd, 2018
- Best Encryption Software 2018 - Encrypt Files on Windows PCs - August 20th, 2018
- Download BestCrypt Volume Encryption 3.78.05 / 4.01.09 Beta - July 26th, 2018
- End-to-end encryption - Wikipedia - July 24th, 2018
- Download Symantec Encryption Desktop 10.4.0 Build 1100 - July 15th, 2018
- HTTPS - Wikipedia - July 10th, 2018
- AES encryption - June 20th, 2018
- Encrypt email messages - Outlook - June 20th, 2018
- Download Sophos Free Encryption 2.40.1.11 - softpedia.com - June 19th, 2018
- Does Skype use encryption? | Skype Support - June 16th, 2018
- Encryption- Computer & Information Security - Information ... - May 25th, 2018
- Enable BitLocker on USB Flash Drives to Protect Data - May 25th, 2018
- Transparent Data Encryption (TDE) - msdn.microsoft.com - April 12th, 2018
- Encryption Software Market - Global Forecast to 2022 - March 24th, 2018
- What AES Encryption Is And How It's Used To Secure File Transfers - March 24th, 2018
- Encryption vs. Cryptography - What is the Difference? - March 24th, 2018
- The Best Encryption Software - TopTenReviews - February 16th, 2018
- File-Based Encryption | Android Open Source Project - February 7th, 2018
- Beyond Encryption | Secure Enterprise email using existing ... - February 1st, 2018
- Azure Search enterprise security: Data encryption and user ... - January 26th, 2018
- Skype finally getting end-to-end encryption | Ars Technica - January 13th, 2018
- FBI chief says phone encryption is a 'major public safety issue' - January 13th, 2018
- Encryption and Export Administration Regulations (EAR) - December 27th, 2017
- Key (cryptography) - Wikipedia - December 21st, 2017

## Recent Comments