Dates chiseled into an ancient tombstone have more in common with the data in your phone or laptop than you may realize. They both involve conventional, classical information, carried by hardware that is relatively immune to errors. The situation inside a quantum computer is far different: The information itself has its own idiosyncratic properties, and compared with standard digital microelectronics, state-of-the-art quantum-computer hardware is more than a billion trillion times as likely to suffer a fault. This tremendous susceptibility to errors is the single biggest problem holding back quantum computing from realizing its great promise.
Fortunately, an approach known as quantum error correction (QEC) can remedy this problem, at least in principle. A mature body of theory built up over the past quarter century now provides a solid theoretical foundation, and experimentalists have demonstrated dozens of proof-of-principle examples of QEC. But these experiments still have not reached the level of quality and sophistication needed to reduce the overall error rate in a system.
The two of us, along with many other researchers involved in quantum computing, are trying to move definitively beyond these preliminary demos of QEC so that it can be employed to build useful, large-scale quantum computers. But before describing how we think such error correction can be made practical, we need to first review what makes a quantum computer tick.
Information is physical. This was the mantra of the distinguished IBM researcher Rolf Landauer. Abstract though it may seem, information always involves a physical representation, and the physics matters.
Conventional digital information consists of bits, zeros and ones, which can be represented by classical states of matter, that is, states well described by classical physics. Quantum information, by contrast, involves qubitsquantum bitswhose properties follow the peculiar rules of quantum mechanics.
A classical bit has only two possible values: 0 or 1. A qubit, however, can occupy a superposition of these two information states, taking on characteristics of both. Polarized light provides intuitive examples of superpositions. You could use horizontally polarized light to represent 0 and vertically polarized light to represent 1, but light can also be polarized on an angle and then has both horizontal and vertical components at once. Indeed, one way to represent a qubit is by the polarization of a single photon of light.
These ideas generalize to groups of n bits or qubits: n bits can represent any one of 2n possible values at any moment, while n qubits can include components corresponding to all 2n classical states simultaneously in superposition. These superpositions provide a vast range of possible states for a quantum computer to work with, albeit with limitations on how they can be manipulated and accessed. Superposition of information is a central resource used in quantum processing and, along with other quantum rules, enables powerful new ways to compute.
Researchers are experimenting with many different physical systems to hold and process quantum information, including light, trapped atoms and ions, and solid-state devices based on semiconductors or superconductors. For the purpose of realizing qubits, all these systems follow the same underlying mathematical rules of quantum physics, and all of them are highly sensitive to environmental fluctuations that introduce errors. By contrast, the transistors that handle classical information in modern digital electronics can reliably perform a billion operations per second for decades with a vanishingly small chance of a hardware fault.
Of particular concern is the fact that qubit states can roam over a continuous range of superpositions. Polarized light again provides a good analogy: The angle of linear polarization can take any value from 0 to 180 degrees.
Pictorially, a qubits state can be thought of as an arrow pointing to a location on the surface of a sphere. Known as a Bloch sphere, its north and south poles represent the binary states 0 and 1, respectively, and all other locations on its surface represent possible quantum superpositions of those two states. Noise causes the Bloch arrow to drift around the sphere over time. A conventional computer represents 0 and 1 with physical quantities, such as capacitor voltages, that can be locked near the correct values to suppress this kind of continuous wandering and unwanted bit flips. There is no comparable way to lock the qubits arrow to its correct location on the Bloch sphere.
Early in the 1990s, Landauer and others argued that this difficulty presented a fundamental obstacle to building useful quantum computers. The issue is known as scalability: Although a simple quantum processor performing a few operations on a handful of qubits might be possible, could you scale up the technology to systems that could run lengthy computations on large arrays of qubits? A type of classical computation called analog computing also uses continuous quantities and is suitable for some tasks, but the problem of continuous errors prevents the complexity of such systems from being scaled up. Continuous errors with qubits seemed to doom quantum computers to the same fate.
We now know better. Theoreticians have successfully adapted the theory of error correction for classical digital data to quantum settings. QEC makes scalable quantum processing possible in a way that is impossible for analog computers. To get a sense of how it works, its worthwhile to review how error correction is performed in classical settings.
Simple schemes can deal with errors in classical information. For instance, in the 19th century, ships routinely carried clocks for determining the ships longitude during voyages. A good clock that could keep track of the time in Greenwich, in combination with the suns position in the sky, provided the necessary data. A mistimed clock could lead to dangerous navigational errors, though, so ships often carried at least three of them. Two clocks reading different times could detect when one was at fault, but three were needed to identify which timepiece was faulty and correct it through a majority vote.
The use of multiple clocks is an example of a repetition code: Information is redundantly encoded in multiple physical devices such that a disturbance in one can be identified and corrected.
As you might expect, quantum mechanics adds some major complications when dealing with errors. Two problems in particular might seem to dash any hopes of using a quantum repetition code. The first problem is that measurements fundamentally disturb quantum systems. So if you encoded information on three qubits, for instance, observing them directly to check for errors would ruin them. Like Schrdingers cat when its box is opened, their quantum states would be irrevocably changed, spoiling the very quantum features your computer was intended to exploit.
The second issue is a fundamental result in quantum mechanics called the no-cloning theorem, which tells us it is impossible to make a perfect copy of an unknown quantum state. If you know the exact superposition state of your qubit, there is no problem producing any number of other qubits in the same state. But once a computation is running and you no longer know what state a qubit has evolved to, you cannot manufacture faithful copies of that qubit except by duplicating the entire process up to that point.
Fortunately, you can sidestep both of these obstacles. Well first describe how to evade the measurement problem using the example of a classical three-bit repetition code. You dont actually need to know the state of every individual code bit to identify which one, if any, has flipped. Instead, you ask two questions: Are bits 1 and 2 the same? and Are bits 2 and 3 the same? These are called parity-check questions because two identical bits are said to have even parity, and two unequal bits have odd parity.
The two answers to those questions identify which single bit has flipped, and you can then counterflip that bit to correct the error. You can do all this without ever determining what value each code bit holds. A similar strategy works to correct errors in a quantum system.
Learning the values of the parity checks still requires quantum measurement, but importantly, it does not reveal the underlying quantum information. Additional qubits can be used as disposable resources to obtain the parity values without revealing (and thus without disturbing) the encoded information itself.
Like Schrdingers cat when its box is opened, the quantum states of the qubits you measured would be irrevocably changed, spoiling the very quantum features your computer was intended to exploit.
What about no-cloning? It turns out it is possible to take a qubit whose state is unknown and encode that hidden state in a superposition across multiple qubits in a way that does not clone the original information. This process allows you to record what amounts to a single logical qubit of information across three physical qubits, and you can perform parity checks and corrective steps to protect the logical qubit against noise.
Quantum errors consist of more than just bit-flip errors, though, making this simple three-qubit repetition code unsuitable for protecting against all possible quantum errors. True QEC requires something more. That came in the mid-1990s when Peter Shor (then at AT&T Bell Laboratories, in Murray Hill, N.J.) described an elegant scheme to encode one logical qubit into nine physical qubits by embedding a repetition code inside another code. Shors scheme protects against an arbitrary quantum error on any one of the physical qubits.
Since then, the QEC community has developed many improved encoding schemes, which use fewer physical qubits per logical qubitthe most compact use fiveor enjoy other performance enhancements. Today, the workhorse of large-scale proposals for error correction in quantum computers is called the surface code, developed in the late 1990s by borrowing exotic mathematics from topology and high-energy physics.
It is convenient to think of a quantum computer as being made up of logical qubits and logical gates that sit atop an underlying foundation of physical devices. These physical devices are subject to noise, which creates physical errors that accumulate over time. Periodically, generalized parity measurements (called syndrome measurements) identify the physical errors, and corrections remove them before they cause damage at the logical level.
A quantum computation with QEC then consists of cycles of gates acting on qubits, syndrome measurements, error inference, and corrections. In terms more familiar to engineers, QEC is a form of feedback stabilization that uses indirect measurements to gain just the information needed to correct errors.
QEC is not foolproof, of course. The three-bit repetition code, for example, fails if more than one bit has been flipped. Whats more, the resources and mechanisms that create the encoded quantum states and perform the syndrome measurements are themselves prone to errors. How, then, can a quantum computer perform QEC when all these processes are themselves faulty?
Remarkably, the error-correction cycle can be designed to tolerate errors and faults that occur at every stage, whether in the physical qubits, the physical gates, or even in the very measurements used to infer the existence of errors! Called a fault-tolerant architecture, such a design permits, in principle, error-robust quantum processing even when all the component parts are unreliable.
A long quantum computation will require many cycles of quantum error correction (QEC). Each cycle would consist of gates acting on encoded qubits (performing the computation), followed by syndrome measurements from which errors can be inferred, and corrections. The effectiveness of this QEC feedback loop can be greatly enhanced by including quantum-control techniques (represented by the thick blue outline) to stabilize and optimize each of these processes.
Even in a fault-tolerant architecture, the additional complexity introduces new avenues for failure. The effect of errors is therefore reduced at the logical level only if the underlying physical error rate is not too high. The maximum physical error rate that a specific fault-tolerant architecture can reliably handle is known as its break-even error threshold. If error rates are lower than this threshold, the QEC process tends to suppress errors over the entire cycle. But if error rates exceed the threshold, the added machinery just makes things worse overall.
The theory of fault-tolerant QEC is foundational to every effort to build useful quantum computers because it paves the way to building systems of any size. If QEC is implemented effectively on hardware exceeding certain performance requirements, the effect of errors can be reduced to arbitrarily low levels, enabling the execution of arbitrarily long computations.
At this point, you may be wondering how QEC has evaded the problem of continuous errors, which is fatal for scaling up analog computers. The answer lies in the nature of quantum measurements.
In a typical quantum measurement of a superposition, only a few discrete outcomes are possible, and the physical state changes to match the result that the measurement finds. With the parity-check measurements, this change helps.
Imagine you have a code block of three physical qubits, and one of these qubit states has wandered a little from its ideal state. If you perform a parity measurement, just two results are possible: Most often, the measurement will report the parity state that corresponds to no error, and after the measurement, all three qubits will be in the correct state, whatever it is. Occasionally the measurement will instead indicate the odd parity state, which means an errant qubit is now fully flipped. If so, you can flip that qubit back to restore the desired encoded logical state.
In other words, performing QEC transforms small, continuous errors into infrequent but discrete errors, similar to the errors that arise in digital computers.
Researchers have now demonstrated many of the principles of QEC in the laboratoryfrom the basics of the repetition code through to complex encodings, logical operations on code words, and repeated cycles of measurement and correction. Current estimates of the break-even threshold for quantum hardware place it at about 1 error in 1,000 operations. This level of performance hasnt yet been achieved across all the constituent parts of a QEC scheme, but researchers are getting ever closer, achieving multiqubit logic with rates of fewer than about 5 errors per 1,000 operations. Even so, passing that critical milestone will be the beginning of the story, not the end.
On a system with a physical error rate just below the threshold, QEC would require enormous redundancy to push the logical rate down very far. It becomes much less challenging with a physical rate further below the threshold. So just crossing the error threshold is not sufficientwe need to beat it by a wide margin. How can that be done?
If we take a step back, we can see that the challenge of dealing with errors in quantum computers is one of stabilizing a dynamic system against external disturbances. Although the mathematical rules differ for the quantum system, this is a familiar problem in the discipline of control engineering. And just as control theory can help engineers build robots capable of righting themselves when they stumble, quantum-control engineering can suggest the best ways to implement abstract QEC codes on real physical hardware. Quantum control can minimize the effects of noise and make QEC practical.
In essence, quantum control involves optimizing how you implement all the physical processes used in QECfrom individual logic operations to the way measurements are performed. For example, in a system based on superconducting qubits, a qubit is flipped by irradiating it with a microwave pulse. One approach uses a simple type of pulse to move the qubits state from one pole of the Bloch sphere, along the Greenwich meridian, to precisely the other pole. Errors arise if the pulse is distorted by noise. It turns out that a more complicated pulse, one that takes the qubit on a well-chosen meandering route from pole to pole, can result in less error in the qubits final state under the same noise conditions, even when the new pulse is imperfectly implemented.
One facet of quantum-control engineering involves careful analysis and design of the best pulses for such tasks in a particular imperfect instance of a given system. It is a form of open-loop (measurement-free) control, which complements the closed-loop feedback control used in QEC.
This kind of open-loop control can also change the statistics of the physical-layer errors to better comport with the assumptions of QEC. For example, QEC performance is limited by the worst-case error within a logical block, and individual devices can vary a lot. Reducing that variability is very beneficial. In an experiment our team performed using IBMs publicly accessible machines, we showed that careful pulse optimization reduced the difference between the best-case and worst-case error in a small group of qubits by more than a factor of 10.
Some error processes arise only while carrying out complex algorithms. For instance, crosstalk errors occur on qubits only when their neighbors are being manipulated. Our team has shown that embedding quantum-control techniques into an algorithm can improve its overall success by orders of magnitude. This technique makes QEC protocols much more likely to correctly identify an error in a physical qubit.
For 25 years, QEC researchers have largely focused on mathematical strategies for encoding qubits and efficiently detecting errors in the encoded sets. Only recently have investigators begun to address the thorny question of how best to implement the full QEC feedback loop in real hardware. And while many areas of QEC technology are ripe for improvement, there is also growing awareness in the community that radical new approaches might be possible by marrying QEC and control theory. One way or another, this approach will turn quantum computing into a realityand you can carve that in stone.
This article appears in the July 2022 print issue as Quantum Error Correction at the Threshold.
From Your Site Articles
Related Articles Around the Web
Continued here:
Quantum Error Correction: Time to Make It Work - IEEE Spectrum
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Quantum cryptography - Wikipedia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]