When I was in middle school, I read a popular book about programming in BASIC (which was the most popular programming language for beginners at that time). But it was 1986, and we did not have computers at home or school yet. So, I could only write computer programs on paper, without being able to try them on an actual computer.

Surprisingly, I am now doing something similarI am studying how to solve problems on a quantum computer. We do not yet have a fully functional quantum computer. But I am trying to figure out what quantum computers will be able to do when we build them.

The story of quantum computers begins in 1981 with Richard Feynman, probablythe most famous physicist ofhis time. At a conference on physics and computation atthe Massachusetts Institute of Technology, Feynman asked the question: Can we simulate physics on a computer?

The answer wasnot exactly. Or, more preciselynot all of physics. One of the branches of physics is quantum mechanics, which studiesthe laws of nature on the scale of individual atoms and particles. If we try to simulate quantum mechanics on a computer, we run into a fundamental problem. The full description of quantum physics has so many variables that we cannot keep track of all of them on a computer.

If one particle can be described by two variables, then to describe the most general state of n particles, we need 2n variables. If we have 100 particles, we need 2100 variables, which is roughly 1 with 30 zeros. This number is so big that computers will never have so much memory.

By itself, this problem was nothing newmany physicists already knew that. But Feynman took it one step further. He asked whether we could turn this problem into something positive: If we cannot simulate quantum physics on a computer, maybe we can build a quantum mechanical computerwhich would be better than the ordinary computers?

This question was asked by the most famous physicist of the time. Yet, over the next few years, almost nothing happened. The idea of quantum computers was so new and so unusual that nobody knew how to start thinking about it.

But Feynman kept telling his ideas to others, again and again. He managed to inspire a small number of people who started thinking: what would a quantum computer look like? And what would it be able to do?

Quantum mechanics, the basis for quantum computers, emerged from attempts to understand the nature of matter and light. At the end of the nineteenth century, one of the big puzzles of physics was color.

The color of an object is determined by the color of the light that it absorbs and the color of the light that it reflects. On an atomic level, we have electrons rotating around the nucleus of an atom. An electron can absorb a particle of light (photon), and this causes the electron to jump to a different orbit around the nucleus.

In the nineteenth century, experiments with heated gasses showed that each type of atom only absorbs and emits light of some specific frequencies. For example,visible light emitted by hydrogen atoms only consists of four specific colors. The big question was: how can we explain that?

Physicists spent decades looking for formulas that would predict the color of the light emitted by various atoms and models that would explain it. Eventually, this puzzle was solved by Danish physicist Niels Bohr in 1913 when he postulated that atoms and particles behave according to physical laws that are quite different from what we see on a macroscopic scale. (In 1922, Bohr, who would become a frequent Member at the Institute, was awarded a Nobel Prize for this discovery.)

To understand the difference, we can contrast Earth (which is orbiting around the Sun) and an electron (which is rotating around the nucleus of an atom). Earth can be at any distance from the Sun. Physical laws do not prohibit the orbit of Earth to be a hundred meters closer to the Sun or a hundred meters further. In contrast, Bohrs model only allows electrons to be in certain orbits and not between those orbits. Because of this, electrons can only absorb the light of colors that correspond to a difference between two valid orbits.

Around the same time, other puzzles about matter and light were solved bypostulating that atoms and particles behave differently from macroscopic objects. Eventually, this led to the theory of quantum mechanics, which explains all of those differences, using a small number of basic principles.

Quantum mechanics has been an object of much debate. Bohr himself said, Anyone not shocked by quantum mechanics has not yet understood it. Albert Einstein believed that quantum mechanics should not be correct. And, even today, popular lectures on quantum mechanics often emphasize the strangeness of quantum mechanics as one of the main points.

But I have a different opinion. The path of how quantum mechanics was discovered was very twisted and complicated. But the end result of this path, the basicprinciples of quantum mechanics, is quite simple. There are a few things that are different from classical physics and one has to accept those. But, once you accept them, quantum mechanics is simple and natural. Essentially, one can think of quantum mechanics as a generalization of probability theory in which probabilities can be negative.

In the last decades, research in quantum mechanics has been moving into a new stage. Earlier, the goal of researchers was to understand the laws of nature according to how quantum systems function. In many situations, this has been successfully achieved. The new goal is to manipulate and control quantum systems so that they behave in a prescribed way.

This brings the spirit of research closer to computer science. Alan Key, a distinguished computer scientist, once characterized the difference between natural sciences and computer science in the following way. In natural sciences, Nature has given us the world, and we just discovered its laws. In computers, we can stuff the laws into it and create the world. Experiments in quantum physics are now creating artificial physical systems that obey the laws of quantum mechanics but do not exist in nature under normal conditions.

An example of such an artificial quantum system is a quantum computer. A quantum computer encodes information into quantum states and computes by performing quantum operations on it.

There are several tasks for which a quantum computer will be useful. The one that is mentioned most frequently is that quantum computers will be able to read secret messages communicated over the internet using the current technologies (such as RSA, Diffie-Hellman, and other cryptographic protocols that are based on the hardness of number-theoretic problems like factoring and discrete logarithm). But there are many other fascinating applications.

First of all, if we have a quantum computer, it will be useful for scientists for conducting virtual experiments. Quantum computing started with Feynmans observation that quantum systems are hard to model on a conventional computer. If we had a quantum computer, we could use it to model quantum systems. (This is known as quantum simulation.) For example, we could model the behavior of atoms and particles at unusual conditions (for example, very high energies that can be only created in the Large Hadron Collider) without actually creating those unusual conditions. Or we could model chemical reactionsbecause interactions among atoms in a chemical reaction is a quantum process.

Another use of quantum computers is searching huge amounts of data. Lets say that we have a large phone book, ordered alphabetically by individual names (and not by phone numbers). If we wanted to find the person who has the phone number 6097348000, we would have to go through the whole phone book and look at every entry. For a phone book with one million phone numbers, it could take one million steps. In 1996, Lov Grover from Bell Labs discovered that a quantum computer would be able to do the same task with one thousand steps instead of one million.

More generally, quantum computers would be useful whenever we have to find something in a large amount of data: a needle in a haystackwhether this is the right phone number or something completely different.

Another example of that is if we want to find two equal numbers in a large amount of data. Again, if we have one million numbers, a classical computer might have to look at all of them and take one million steps. We discovered that a quantum computer could do it in a substantially smaller amount of time.

All of these achievements of quantum computing are based on the same effects of quantum mechanics. On a high level, these are known as quantum parallelism and quantum interference.

A conventional computer processes information by encoding it into 0s and 1s. If we have a sequence of thirty 0s and 1s, it has about one billion of possible values. However, a classical computer can only be in one of these one billion states at the same time. A quantum computer can be in a quantum combination of all of those states, called superposition. This allows it to perform one billion or more copies of a computation at the same time. In a way, this is similar to a parallel computer withone billion processors performing different computations at the same timewith one crucial difference. For a parallel computer, we need to have one billion different processors. In a quantum computer, all one billion computations will be running on the same hardware. This is known as quantum parallelism.

The result of this process is a quantum state that encodes the results of onebillion computations. The challenge for a person who designs algorithms for a quantum computer (such as myself) is: how do we access these billion results? If we measured this quantum state, we would get just one of the results. All of the other 999,999,999 results would disappear.

To solve this problem, one uses the second effect, quantum interference. Consider a process that can arrive at the same outcome in several different ways. In the non-quantum world, if there are two possible paths toward one result and each path is taken with a probability , the overall probability of obtaining this result is += . Quantumly, the two paths can interfere, increasing the probability of success to 1.

Quantum algorithms combine these two effects. Quantum parallelism is used to perform a large number of computations at the same time, and quantum interference is used to combine their results into something that is both meaningful and can be measured according to the laws of quantum mechanics.

The biggest challenge is building a large-scale quantum computer. There are several ways one could do it. So far, the best results have been achieved using trapped ions. An ion is an atom that has lost one or more of its electrons. An ion trap is a system consisting of electric and magnetic fields, which can capture ions and keep them at locations. Using an ion trap, one can arrange several ions in a line, at regular intervals.

One can encode 0 into the lowest energy state of an ion and 1 into a higher energy state. Then, the computation is performed using light to manipulate the states of ions. In an experiment by Rainer Blatts group at the University of Innsbruck, Austria, this has been successfully performed for up to fourteen ions. The next step is to scale the technology up to a bigger number of trapped ions.

There are many other paths toward building a quantum computer. Instead of trapped ions, one can use electrons or particles of lightphotons. One can even use more complicated objects, for example, the electric current in a superconductor. A very recent experiment by a group led by John Martinis of the University of California, Santa Barbara, has shown how to perform quantum operations on one or two quantum bits with very high precision from 99.4% to 99.92% using the superconductor technology.

The fascinating thing is that all of these physical systems, from atoms to electric current in a superconductor, behave according to the same physical laws. And they all can perform quantum computation. Moving forward with any of these technologies relates to a fundamental problem in experimental physics: isolating quantum systems from environment and controlling them with high precision. This is a very difficult and, at the same time, a very fundamental task and being able to control quantum systems will be useful for many other purposes.

Besides building quantum computers, we can use the ideas of information to think about physical laws in terms of information, in terms of 0s and 1s. This is the way I learned quantum mechanicsI started as a computer scientist, and I learned quantum mechanics by learning quantum computing first. And I think this is the best way to learn quantum mechanics.

Quantum mechanics can be used to describe many physical systems, and in each case, there are many technical details that are specific to the particular physicalsystem. At the same time, there is a common set of core principles that all of those physical systems obey.

Quantum information abstracts away from the details that are specific to a particular physical system and focuses on the principles that are common to all quantum systems. Because of that, studying quantum information illuminates the basic concepts of quantum mechanics better than anything else. And, one day, this could become the standard way of learning quantum mechanics.

For myself, the main question still is: how will quantum computers be useful? We know that they will be faster for many computational tasks, from modeling nature to searching large amounts of data. I think there are many more applications and, perhaps, the most important ones are still waiting to be discovered.

Originally posted here:

What Can We Do with a Quantum Computer? | Institute for ...

- Google claims to have invented a quantum computer, but IBM begs to differ - The Conversation CA - January 22nd, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Quantaneo, the Quantum Computing Source - January 22nd, 2020
- U of T's Peter Wittek, who will be remembered at Feb. 3 event, on why the future is quantum - News@UofT - January 17th, 2020
- Quantum Computing Technologies Market 2019, Size, Share, Global Industry Growth, Business Statistics, Top Leaders, Competitive Landscape, Forecast To... - January 17th, 2020
- This Week In Security: Windows 10 Apocalypse, Paypal Problems, And Cablehaunt - Hackaday - January 17th, 2020
- Kitchener's Angstrom Engineering is making a quantum leap with its next-generation technology - TheRecord.com - January 17th, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Yahoo Finance - January 16th, 2020
- The dark side of IoT, AI and quantum computing: Hacking, data breaches and existential threat - ZDNet - January 16th, 2020
- 'How can we compete with Google?': the battle to train quantum coders - The Guardian - January 16th, 2020
- IBM heads US patent list for 27th consecutive year - Technology Decisions - January 16th, 2020
- New Technique May Be Capable of Creating Qubits From Silicon Carbide Wafer - Tom's Hardware - January 14th, 2020
- The hunt for the 'angel particle' continues - Big Think - January 13th, 2020
- How to verify that quantum chips are computing correctly - MIT News - January 13th, 2020
- Googles Quantum Supremacy will mark the End of the Bitcoin in 2020 - The Coin Republic - January 13th, 2020
- Bleeding edge information technology developments - IT World Canada - January 13th, 2020
- Jeffrey Epstein scandal: MIT professor put on leave, he 'failed to inform' college that sex offender made donations - CNBC - January 10th, 2020
- The teenager that's at CES to network - Yahoo Singapore News - January 10th, 2020
- AI, ML and quantum computing to cement position in 2020: Alibabas Jeff Zhang - Tech Observer - January 8th, 2020
- Perspective: End Of An Era | WNIJ and WNIU - WNIJ and WNIU - January 8th, 2020
- Volkswagen carried out the world's first pilot project for traffic optimization with a quantum computer - Quantaneo, the Quantum Computing Source - January 6th, 2020
- The 12 Most Important and Stunning Quantum Experiments of 2019 - Livescience.com - December 31st, 2019
- Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips - ScienceAlert - December 31st, 2019
- Quantum Supremacy and the Regulation of Quantum Technologies - The Regulatory Review - December 31st, 2019
- The Best of Science in 2019 - Research Matters - December 31st, 2019
- Technology And Society: Can Marketing Save The World? - Forbes - December 31st, 2019
- From the image of a black hole to 'artificial embryos', 2019 was the year of many firsts in science - Economic Times - December 28th, 2019
- Information teleported between two computer chips for the first time - New Atlas - December 26th, 2019
- Same Plastic That Make Legos Could Also Be The Best Thermal Insulators Used in Quantum Computers - KTLA Los Angeles - December 26th, 2019
- Quanta's Year in Math and Computer Science (2019) - Quanta Magazine - December 26th, 2019
- 2019 EurekAlert! Trending Release List the most international ever - Science Codex - December 26th, 2019
- The big science and environment stories of 2019 - BBC News - December 26th, 2019
- Could quantum computing be the key to cracking congestion? - SmartCitiesWorld - December 15th, 2019
- ProBeat: AWS and Azure are generating uneasy excitement in quantum computing - VentureBeat - December 15th, 2019
- Will quantum computing overwhelm existing security tech in the near future? - Help Net Security - December 15th, 2019
- Quantum expert Robert Sutor explains the basics of Quantum Computing - Packt Hub - December 15th, 2019
- Traditional cryptography doesn't stand a chance against the quantum age - Inverse - December 15th, 2019
- China is beating the US when it comes to quantum security - MIT Technology Review - December 15th, 2019
- Technology to Highlight the Next 10 Years: Quantum Computing - Somag News - December 15th, 2019
- Quantum Trends And The Internet of Things - Forbes - December 6th, 2019
- Quantum supremacy is here, but smart data will have the biggest impact - Quantaneo, the Quantum Computing Source - December 6th, 2019
- Beer With Bella: Tyson Yunkaporta - The New York Times - December 6th, 2019
- The New Cold War? Its With China, and It Has Already Begun - The New York Times - December 2nd, 2019
- How Countries Are Betting on to Become Supreme in Quantum Computing - Analytics Insight - December 2nd, 2019
- Study: Our universe may be part of a giant quantum computer - The Next Web - November 28th, 2019
- First quantum computing conference to take place in Cambridge - Cambridge Independent - November 28th, 2019
- Threat of quantum computing hackathon to award $100,000 - App Developer Magazine - November 28th, 2019
- World High Performance Computing (HPC) Market Oulook Report, 2019-2024 - HPC Will Be Integral to Combined Classical & Quantum Computing Hybrid... - November 28th, 2019
- ETU "LETI" first won the Bertrand Meyer Award - QS WOW News - November 28th, 2019
- Global Quantum Computing Market is Set to Experience Revolutionary Growth With +25% CAGR by 2025 | Top Players D-Wave Systems Inc., QX Branch, Google... - November 28th, 2019
- Japan plots 20-year race to quantum computers, chasing US and China - Nikkei Asian Review - November 23rd, 2019
- A super cover illustration highlights superconductivity research - The Mix - November 23rd, 2019
- The future that graphene built - Knowable Magazine - November 23rd, 2019
- New Berlin foundation turns AI into immersive art - Art Newspaper - November 23rd, 2019
- Maryanna Saenko and Steve Jurvetson of Future Ventures talk SpaceX, the Boring Co. and . . . ayahuasca - TechCrunch - November 23rd, 2019
- Quantum Hackathon With $100,000 Prize Receives Overwhelming Response - Yahoo Finance - November 22nd, 2019
- Quantum Computing: Challenges, Trends and the Road Ahead - CMSWire - November 20th, 2019
- Researchers Have Achieved a New Level of Quantum Supremacy - TechDecisions - November 20th, 2019
- Will quantum computers revolutionize the world? The Courier - The Courier - November 20th, 2019
- Reality is subjective to the observer - scientists make stunning claim in quantum study - Express.co.uk - November 20th, 2019
- Geeking Out With Legendary Futurist and Investor Steve Jurvetson - mySanAntonio.com - November 20th, 2019
- Hedera Hashgraph (HBAR) Founder Says Quantum Computing Is Not a Threat to Cryptocurrency, Although That Claim Is Debatable Crypto.IQ | Bitcoin and... - November 18th, 2019
- Innovation Focused Firms Issue Open Call for Hackers - IndustryWeek - November 18th, 2019
- Quantum computer - Simple English Wikipedia, the free ... - October 11th, 2019
- Topological quantum computer - Wikipedia - October 11th, 2019
- What is a quantum computer? Explained with a simple example. - September 11th, 2019
- Qubits and Defining the Quantum Computer | HowStuffWorks - September 5th, 2019
- For a Split Second, a Quantum Computer Made History Go ... - May 13th, 2019
- Noisy Quantum Computers Could Be Good for Chemistry Problems ... - April 11th, 2019
- What is a Quantum Computer? - Definition from Techopedia - April 11th, 2019
- What Is a Quantum Computer? | JSTOR Daily - April 11th, 2019
- Measuring Quantum Computer Power With IBM Quantum Volume ... - April 9th, 2019
- Explainer: What is a quantum computer ... - March 24th, 2019
- Qubit - Wikipedia - February 25th, 2019
- Quantum computer | computer science | Britannica.com - January 10th, 2019
- IBMs new quantum computer is a symbol, not a breakthrough - January 9th, 2019
- IBM unveils the world's first quantum computer that ... - January 9th, 2019
- Were Close to a Universal Quantum Computer, Heres Where We're At - November 28th, 2018
- Schrdinger's Killer App: Race to Build the World's First ... - August 7th, 2018
- How Quantum Computers Work - May 3rd, 2018
- This is what a 50-qubit quantum computer looks like - January 15th, 2018

## Recent Comments