In recent years, some big tech companies like IBM, Microsoft, Intel, or Google have been working in relative silence on something that sounds great: quantum computing. The main problem with this is that it is difficult to know what exactly it is and what it can be useful for.

There are some questions that can be easily solved. For example, quantum computing is not going to help you have more FPS on your graphics card at the moment. Nor will it be as easy as changing the CPU of your computer for a quantum to make it hyperfast. Quantum computing is fundamentally different from the computing we are used to, but how?

At the beginning of the 20th century, Planck and Einstein proposed that light is not a continuous wave (like the waves in a pond) but that it is divided into small packages or quanta. This apparently simple idea served to solve a problem called the ultraviolet catastrophe. But over the years other physicists developed it and came to surprising conclusions about the matter, of which we will be interested in two: the superposition of states and entanglement.

To understand why we are interested, lets take a short break and think about how a classic computer works. The basic unit of information is the bit, which can have two possible states (1 or 0) and with which we can perform various logical operations (AND, NOT, OR). Putting together n bits we can represent numbers and operate on those numbers, but with limitations: we can only represent up to 2 different states, and if we want to change x bits we have to perform at least x operations on them: there is no way to magically change them without touching them.

Well, superposition and entanglement allow us to reduce these limitations: with superposition, we can store many more than just 2 ^ n states with n quantum bits (qubits), and entanglement maintains certain relations between qubits in such a way that the operations in one qubit they forcefully affect the rest.

Overlapping, while looking like a blessing at first glance, is also a problem. As Alexander Holevo showed in 1973, even though we have many more states than we can save in n qubits, in practice we can only read 2 ^ n different ones. As we saw in an article in Genbeta about the foundations of quantum computing: a qubit is not only worth 1 or 0 as a normal bit, but it can be 1 in 80% and 0 in 20%. The problem is that when we read it we can only obtain either 1 or 0, and the probabilities that each value had of leaving are lost because when we measured it we modified it.

This discrepancy between the information kept by the qubits and what we can read led Benioff and Feynman to demonstrate that a classical computer would not be able to simulate a quantum system without a disproportionate amount of resources, and to propose models for a quantum computer that did. was able to do that simulation.

Those quantum computers would probably be nothing more than a scientific curiosity without the second concept, entanglement, which allows two quite relevant algorithms to be developed: quantum tempering in 1989 and Shors algorithm in 1994. The first allows finding minimum values of functions, which So said, it does not sound very interesting but it has applications in artificial intelligence and machine learning, as we discussed in another article. For example, if we manage to code the error rate of a neural network as a function to which we can apply quantum quenching, that minimum value will tell us how to configure the neural network to be as efficient as possible.

The second algorithm, the Shor algorithm, helps us to decompose a number into its prime factors much more efficiently than we can achieve on a normal computer. So said, again, it doesnt sound at all interesting. But if I tell you that RSA, one of the most used algorithms to protect and encrypt data on the Internet, is based on the fact that factoring numbers are exponentially slow (adding a bit to the key implies doubling the time it takes to do an attack by force) then the thing changes. A quantum computer with enough qubits would render many encryption systems completely obsolete.

Until now, quantum computing is a field that hasnt been applied much in the real world. To give us an idea, with the twenty qubits of the commercial quantum computer announced by IBM, we could apply Shors factorization algorithm only to numbers less than 1048576, which as you can imagine is not very impressive.

Still, the field has a promising evolution. In 1998 the first ord quantum drive (only two qubits, and needed a nuclear magnetic resonance machine to solve a toy problem (the so-called Deutsch-Jozsa problem). In 2001 Shors algorithm was run for the first time. Only 6 years later, in 2007, D-Wave presented its first computer capable of executing quantum quenching with 16 qubits. This year, the same company announced a 2000 qubit quantum quenching computer. On the other hand, the new IBM computers, although with fewer qubits, they are able to implement generic algorithms and not only that of quantum quenching. In short, it seems that the push is strong and that quantum computing will be increasingly applicable to real problems.

What can those applications be? As we mentioned before, the quantum tempering algorithm is very appropriate for machine learning problems, which makes the computers that implement it extremely useful, although the only thing they can do is run that single algorithm. If systems can be developed that, for example, are capable of transcribing conversations or identifying objects in images and can be translated to train them in quantum computers, the results could be orders of magnitude better than those that already exist. The same algorithm could also be used to find solutions to problems in medicine or chemistry, such as finding the optimal treatment methods for a patient or studying the possible structures of complex molecules.

Generic quantum computers, which have fewer qubits right now, could run more algorithms. For example, they could be used to break much of the crypto used right now as we discussed earlier (which explains why the NSA wanted to have a quantum computer). They would also serve as super-fast search engines if Grovers search algorithm can be implemented, and for physics and chemistry, they can be very useful as efficient simulators of quantum systems.

Unfortunately, algorithms and codes for classic computers couldnt be used on quantum computers and magically get an improvement in speed: you need to develop a quantum algorithm (not a trivial thing) and implement it in order to get that improvement. That, at first, greatly restricts the applications of quantum computers and will be a problem to overcome when those systems are more developed.

However, the main problem facing quantum computing is building computers. Compared to a normal computer, a quantum computer is an extremely complex machine: they operate at a temperature close to absolute zero (-273 C), the qubits support are superconducting and the components to be able to read and manipulate the qubits are not simple either.

What can a non-quantum quantum computer be like? As we have explained before, the two relevant concepts of a quantum computer are superposition and entanglement, and without them, there cannot be the speed improvements that quantum algorithms promise. If computer disturbances modify overlapping qubits and bring them to classical states quickly, or if they break the interweaving between several qubits, what we have is not a quantum computer but only an extremely expensive computer that only serves to run a handful of algorithms. equivalent to a normal computer (and will probably give erroneous results).

Of the two properties, entanglement is the most difficult to maintain and prove to exist. The more qubits there are, the easier it is for one of them to deinterlace (which explains why increasing the number of qubits is not a trivial task). And it is not enough to build the computer and see that correct results come out to say that there are intertwined qubits: looking for evidence of entanglement is a task in itself and in fact, the lack of evidence was one of the main criticisms of D-systems. Wave in its beginnings.

A priori and with the materials that quantum computers are being built with, it does not seem that miniaturization is too feasible. But there is already research on new materials that could be used to create more accessible quantum computers. Who knows if fifty years from now we will be able to buy quantum CPUs to improve the speed of our computers.

comments

View original post here:

Will Quantum Computing Really Change The World? Facts And Myths - Analytics India Magazine

- Solving problems by working together: Could quantum computing hold the key to Covid-19? - ITProPortal - July 2nd, 2020
- Spain Introduces the World's First Quantum Phase Battery - News - All About Circuits - July 2nd, 2020
- Professor tackles one more mystery about quantum mechanics and times flow - GeekWire - July 2nd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through June 27) - Singularity Hub - June 29th, 2020
- Kudos: Read about faculty, staff and student awards, appointments and achievements - Vanderbilt University News - June 29th, 2020
- This Is the First Universal Language for Quantum Computers - Popular Mechanics - June 21st, 2020
- Universal Quantum raises $4.5 million to build a large-scale quantum computer - VentureBeat - June 17th, 2020
- Ethereum (ETH) Might Not have Quantum Resistance on its Roadmap, the QRL Team Reveals - Crowdfund Insider - June 17th, 2020
- Craig Knoblock Named Michael Keston Executive Director of the USC Information Sciences Institute - USC Viterbi School of Engineering - June 17th, 2020
- European quantum computing startup takes its funding to 32M with fresh raise - TechCrunch - June 11th, 2020
- SKT to expand use of new quantum-powered security solutions - The Korea Herald - June 11th, 2020
- Archer looks to commercialisation future with graphene-based biosensor tech - ZDNet - June 11th, 2020
- Dear NASA, please put a particle collider on the Moon - The Next Web - June 11th, 2020
- Top 10 emerging technologies of 2020: Winners and losers - TechRepublic - June 11th, 2020
- When Will Quantum Computing Come to Mainstream? - Analytics Insight - June 8th, 2020
- University announces 2020 winners of Quantrell and Graduate Teaching Awards - UChicago News - June 8th, 2020
- Physicists Found a Way to Save Schrdingers Cat - Dual Dove - June 8th, 2020
- Physicists hunt for room-temperature superconductors that could revolutionize the world's energy system - The Conversation US - June 3rd, 2020
- Covid 19 Pandemic: Quantum Computing Technologies Market 2020, Share, Growth, Trends And Forecast To 2025 - 3rd Watch News - May 24th, 2020
- Molecular dynamics used to simulate 100 million atoms | Opinion - Chemistry World - May 23rd, 2020
- Highest-performing quantum simulator IN THE WORLD delivered to Japan - TechGeek - May 18th, 2020
- Light, fantastic: the path ahead for faster, smaller computer processors - News - The University of Sydney - May 18th, 2020
- Wiring the quantum computer of the future - Space Daily - April 29th, 2020
- Technologies That You Can Explore Other Than Data Science During Lockdown - Analytics India Magazine - April 29th, 2020
- Google's top quantum computing brain may or may not have quit - Fudzilla - April 23rd, 2020
- On the Heels of a Light Beam - Scientific American - April 23rd, 2020
- Advanced Encryption Standard (AES): What It Is and How It Works - Hashed Out by The SSL Store - Hashed Out by The SSL Store - April 23rd, 2020
- Google's Head of Quantum Computing Hardware Resigns - WIRED - April 21st, 2020
- COVID-19: Quantum computing could someday find cures for coronaviruses and other diseases - TechRepublic - April 21st, 2020
- The future of quantum computing in the cloud - TechTarget - April 21st, 2020
- Quantum computer chips demonstrated at the highest temperatures ever - New Scientist News - April 17th, 2020
- Alex Garland on 'Devs,' free will and quantum computing - Engadget - April 14th, 2020
- RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register - April 12th, 2020
- Quantum computing: When to expect the next major leap - TechRepublic - April 12th, 2020
- Cambridge Quantum Computing Performs the World's First Quantum Natural Language Processing Experiment - Quantaneo, the Quantum Computing Source - April 12th, 2020
- The Well-matched Combo of Quantum Computing and Machine Learning - Analytics Insight - March 23rd, 2020
- Picking up the quantum technology baton - The Hindu - March 23rd, 2020
- Research by University of Chicago PhD Student and EPiQC Wins IBM Q Best Paper - HPCwire - March 23rd, 2020
- Honeywell Achieves Breakthrough That Will Enable The Worlds Most Powerful Quantum Computer #47655 - New Kerala - March 23rd, 2020
- Is time broken? Physicists filmed a quantum measurement but the 'moment' was blurry - The Next Web - March 5th, 2020
- What Is Quantum Computing? The Next Era of Computational ... - March 3rd, 2020
- Honeywell says it will soon launch the worlds most powerful quantum computer - TechCrunch - March 3rd, 2020
- Majority of Promising AI Startups Are Still Based in the US - Transport Topics Online - March 3rd, 2020
- 10 Revolutionary Technologies To Lookout For In 2020 - Fossbytes - March 3rd, 2020
- Quantum researchers able to split one photon into three - Space Daily - March 3rd, 2020
- Physicists Captured The Moment That An Atom Enters Quantum Measurement - Somag News - February 29th, 2020
- This Week's Awesome Tech Stories From Around the Web (Through February 29) - Singularity Hub - February 29th, 2020
- IC Breakthroughs: Energy Harvesting, Quantum Computing, and a 96-Core Processor in Six Chiplets - News - All About Circuits - February 29th, 2020
- Top 10 Strategic Technology Breakthroughs That Will Transform Our Lives - Analytics Insight - February 29th, 2020
- New Intel chip could accelerate the advent of quantum computing - RedShark News - February 28th, 2020
- Particle accelerator technology could solve one of the most vexing problems in building quantum computers - Fermi National Accelerator Laboratory - February 28th, 2020
- Top 10 breakthrough technologies of 2020 - TechRepublic - February 28th, 2020
- 21st ISQED Conference to Commence With Focus on Quantum Computing, Security, and AI/ML & Electronic Design - PRNewswire - February 25th, 2020
- NTT Research to Collaborate with UCLA and Georgetown on Cryptography and Blockchain - Yahoo Finance - February 25th, 2020
- Should decision makers be concerned by the threat of quantum? - Information Age - February 25th, 2020
- Keeping classified information secret in a world of quantum computing - Bulletin of the Atomic Scientists - February 11th, 2020
- A neural network that learned to predict the behavior of a quantum system - Tech Explorist - February 9th, 2020
- Deltec Bank, Bahamas A combination of Quantum Computing and Blockchain Technology Will Have a huge Impact on Banking - Press Release - Digital... - February 5th, 2020
- Could Photonic Chips Outpace the Fastest Supercomputers? - Singularity Hub - February 5th, 2020
- Google claims to have invented a quantum computer, but IBM begs to differ - The Conversation CA - January 22nd, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Quantaneo, the Quantum Computing Source - January 22nd, 2020
- U of T's Peter Wittek, who will be remembered at Feb. 3 event, on why the future is quantum - News@UofT - January 17th, 2020
- Quantum Computing Technologies Market 2019, Size, Share, Global Industry Growth, Business Statistics, Top Leaders, Competitive Landscape, Forecast To... - January 17th, 2020
- This Week In Security: Windows 10 Apocalypse, Paypal Problems, And Cablehaunt - Hackaday - January 17th, 2020
- Kitchener's Angstrom Engineering is making a quantum leap with its next-generation technology - TheRecord.com - January 17th, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Yahoo Finance - January 16th, 2020
- The dark side of IoT, AI and quantum computing: Hacking, data breaches and existential threat - ZDNet - January 16th, 2020
- 'How can we compete with Google?': the battle to train quantum coders - The Guardian - January 16th, 2020
- IBM heads US patent list for 27th consecutive year - Technology Decisions - January 16th, 2020
- New Technique May Be Capable of Creating Qubits From Silicon Carbide Wafer - Tom's Hardware - January 14th, 2020
- The hunt for the 'angel particle' continues - Big Think - January 13th, 2020
- How to verify that quantum chips are computing correctly - MIT News - January 13th, 2020
- Googles Quantum Supremacy will mark the End of the Bitcoin in 2020 - The Coin Republic - January 13th, 2020
- Bleeding edge information technology developments - IT World Canada - January 13th, 2020
- Jeffrey Epstein scandal: MIT professor put on leave, he 'failed to inform' college that sex offender made donations - CNBC - January 10th, 2020
- The teenager that's at CES to network - Yahoo Singapore News - January 10th, 2020
- AI, ML and quantum computing to cement position in 2020: Alibabas Jeff Zhang - Tech Observer - January 8th, 2020
- Perspective: End Of An Era | WNIJ and WNIU - WNIJ and WNIU - January 8th, 2020
- Volkswagen carried out the world's first pilot project for traffic optimization with a quantum computer - Quantaneo, the Quantum Computing Source - January 6th, 2020
- The 12 Most Important and Stunning Quantum Experiments of 2019 - Livescience.com - December 31st, 2019

## Recent Comments