Professor Somnath Bhattacharyya next to the vapor deposition chamber that is used to produce diamonds in the lab. Credit: Wits University
The discovery of triplet spin superconductivity in diamonds has the potential to revolutionize the high-tech industry.
Diamonds have a firm foothold in our lexicon. Their many properties often serve as superlatives for quality, clarity, and hardiness. Aside from the popularity of this rare material in ornamental and decorative use, these precious stones are also highly valued in industry where they are used to cut and polish other hard materials and build radiation detectors.
More than a decade ago, a new property was uncovered in diamonds when high concentrations of boron are introduced to it superconductivity. Superconductivity occurs when two electrons with opposite spin form a pair (called a Cooper pair), resulting in the electrical resistance of the material being zero. This means a large supercurrent can flow in the material, bringing with it the potential for advanced technological applications. Yet, little work has been done since to investigate and characterize the nature of a diamonds superconductivity and therefore its potential applications.
New research led by Professor Somnath Bhattacharyya in the Nano-Scale Transport Physics Laboratory (NSTPL) in the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, details the phenomenon of what is called triplet superconductivity in diamond. Triplet superconductivity occurs when electrons move in a composite spin state rather than as a single pair. This is an extremely rare, yet efficient form of superconductivity that until now has only been known to occur in one or two other materials, and only theoretically in diamonds.
Professor Somnath Bhattacharyya next to a dilution fridge a specialised piece of equipment that enables quantum properties of diamond. Credit: Wits University
In a conventional superconducting material such as aluminum, superconductivity is destroyed by magnetic fields and magnetic impurities, however triplet superconductivity in a diamond can exist even when combined with magnetic materials. This leads to more efficient and multifunctional operation of the material, explains Bhattacharyya.
The teams work has recently been published in an article in the New Journal of Physics, titled Effects of Rashba-spin-orbit coupling on superconducting boron-doped nanocrystalline diamond films: evidence of interfacial triplet superconductivity. This research was done in collaboration with Oxford University (UK) and Diamond Light Source (UK). Through these collaborations, beautiful atomic arrangement of diamond crystals and interfaces that have never been seen before could be visualized, supporting the first claims of triplet superconductivity.
Professor Somnath Bhattacharyya and members of the Wits Nano-Scale Transport Physics Lab. They are Professor Yorick Hardy, Dr Christopher Coleman, Kayleigh Mathieson and Professor Somnath Bhattacharyya. Credit: Wits University
Practical proof of triplet superconductivity in diamonds came with much excitement for Bhattacharyya and his team. We were even working on Christmas day, we were so excited, says Davie Mtsuko. This is something that has never been before been claimed in diamond, adds Christopher Coleman. Both Mtsuko and Coleman are co-authors of the paper.
Despite diamonds reputation as a highly rare and expensive resource, they can be manufactured in a laboratory using a specialized piece of equipment called a vapor deposition chamber. The Wits NSTPL has developed their own plasma deposition chamber which allows them to grow diamonds of a higher than normal quality making them ideal for this kind of advanced research.
This finding expands the potential uses of diamond, which is already well-regarded as a quantum material. All conventional technology is based on semiconductors associated with electron charge. Thus far, we have a decent understanding of how they interact, and how to control them. But when we have control over quantum states such as superconductivity and entanglement, there is a lot more physics to the charge and spin of electrons, and this also comes with new properties, says Bhattacharyya. With the new surge of superconducting materials such as diamond, traditional silicon technology can be replaced by cost effective and low power consumption solutions.
The induction of triplet superconductivity in diamond is important for more than just its potential applications. It speaks to our fundamental understanding of physics. Thus far, triplet superconductivity exists mostly in theory, and our study gives us an opportunity to test these models in a practical way, says Bhattacharyya.
Reference: Effects of Rashba-spinorbit coupling on superconducting boron-doped nanocrystalline diamond films: evidence of interfacial triplet superconductivity by Somnath Bhattacharyya, Davie Mtsuko, Christopher Allen and Christopher Coleman, 14 September 2020, New Journal of Physics.DOI: 10.1088/1367-2630/abafe9
The rest is here:
- Improving LIDAR and GPS: Breaking Through the Resolution Barrier With Quantum-Limited Precision - SciTechDaily - January 18th, 2021
- Amy Noelle Parks Brings The Romance of Math and Science To YA - The Nerd Daily - January 18th, 2021
- Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily - January 18th, 2021
- If Wormholes Are Lurking in Our Universe, This Is How We Could Find Them - ScienceAlert - January 18th, 2021
- New quantum technology projects to solve mysteries of the universe - Open Access Government - January 14th, 2021
- Exploring the unanswered questions of our universe with quantum technologies - University of Birmingham - January 14th, 2021
- Wormholes may be lurking in the universe and new studies are proposing ways of finding them - The Conversation UK - January 14th, 2021
- University of Sheffield to lead multi-million pound project which could open up a new frontier in physics - University of Sheffield News - January 14th, 2021
- Raytheon UK part of team transforming the Royal Navy's technology, training and learning solutions - PRNewswire - January 14th, 2021
- Optical selection and sorting of nanoparticles according to quantum mechanical properties - Science Advances - January 14th, 2021
- The unhackable computers that could revolutionize the future - CNN - January 8th, 2021
- Birds Have a Mysterious 'Quantum Sense'. For The First Time, Scientists Saw It in Action - ScienceAlert - January 8th, 2021
- How understanding light has led to a hundred years of bright ideas - The Economist - January 8th, 2021
- Tokyo Institute of Technology: Quantum Mysteries: Probing an Unusual State in the Superconductor-Insulator Transition - India Education Diary - January 8th, 2021
- Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time - SciTechDaily - January 8th, 2021
- Illumination at the limits of knowledge - The Economist - January 8th, 2021
- The top 20 most random things that happened in 2020: Nos. 16-20 - 104.3 The Fan - January 6th, 2021
- Detective Work in Theoretical Physics: Comprehensive Review of Physics of Interacting Particles - SciTechDaily - January 6th, 2021
- New Quantum-Based Distance Measurement Method for GPS and LIDAR - AZoQuantum - January 6th, 2021
- Raytheon Technologies Appoints Marie R. Sylla-Dixon as Chief Diversity Officer to Further Advance Diversity, Equity and Inclusion Initiatives -... - January 6th, 2021
- Quantum Superposition Evidenced by Measuring Interaction of Light with Vibration - AZoQuantum - December 24th, 2020
- Superpositions The Cosmic Weirdness of Quantum Mechanics - The Daily Galaxy --Great Discoveries Channel - December 24th, 2020
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 24th, 2020
- Irish researchers reveal how Santa delivers toys to billions in one night - BreakingNews.ie - December 24th, 2020
- Eight ways Argonne advanced science in 2020 - Newswise - December 24th, 2020
- Scaling the heights of quantum computing to deliver real results - Chinadaily.com.cn - China Daily - December 24th, 2020
- MIT's quantum entangled atomic clock could still be ticking after billions of years - SYFY WIRE - December 24th, 2020
- Matter Deconstructed: The Observer Effect and Photography - PetaPixel - December 24th, 2020
- Everything you need to know about quantum physics (almost ... - December 21st, 2020
- Quantum mechanics - Wikipedia - December 21st, 2020
- Six Things Everyone Should Know About Quantum Physics - December 21st, 2020
- Counter-Intuitive Quantum Mechanics: State of Vibration That Exists Simultaneously at Two Different Times - SciTechDaily - December 21st, 2020
- A state of vibration that exists simultaneously at two different times - Tech Explorist - December 21st, 2020
- This Incredible Particle Only Arises in Two Dimensions - Popular Mechanics - December 21st, 2020
- Quantum Mechanics, the Mind-Body Problem and Negative Theology - Scientific American - December 17th, 2020
- Quantum Interference Phenomenon Identified That Occurs Through Time - SciTechDaily - December 17th, 2020
- 9 Most Confusing Sci-Fi Movies That Feel Like You Need a PhD in Quantum Physics - FandomWire - December 17th, 2020
- Expanding the Scope of Electronic-Structure Theory - Physics - December 17th, 2020
- Physicists attempt to unify all forces of nature and rectify Einstein's biggest failure - Livescience.com - December 17th, 2020
- Black dwarf supernovae: The last explosions in the Universe - SYFY WIRE - December 17th, 2020
- Orford 17-year-old is among brightest young minds in north west - Warrington Guardian - December 17th, 2020
- Meet the kaon - Symmetry magazine - November 10th, 2020
- There Are Places in the World Where Rules Are Less Important Than Kindness by Carlo Rovelli review - The Guardian - November 10th, 2020
- Digging into the 3D Quantum Hall Effect - Physics - November 10th, 2020
- Physicists Circumvent 178-Year Old Theory to Cancel Magnetic Fields - SciTechDaily - November 10th, 2020
- A Modem With a Tiny Mirror Cabinet Could Help Connect The Quantum Internet - ScienceAlert - November 8th, 2020
- Quantum Technology: Harnessing the Power of Quantum Mechanics - Analytics Insight - November 8th, 2020
- Will the Universe Remember Us after We're Gone? - Scientific American - November 8th, 2020
- Threat of Quantum Computing to Bitcoin Should be Taken Seriously, But theres Enough Time to Upgrade Current Security Systems, Experts Claim -... - November 8th, 2020
- Pablo Jarillo-Herrero receives the Lise Meitner Distinguished Lecture and Medal - MIT News - November 8th, 2020
- Lighting up the ion trap - MIT News - November 8th, 2020
- For Thomas Searles, a passion for people and science at HBCUs and MIT - MIT News - November 8th, 2020
- University of Kansas Team Explore Heavy-Ion Particle Physics - Pagosa Daily Post - November 8th, 2020
- Reimagining the laser: new ideas from quantum theory could herald a revolution - The Conversation AU - October 29th, 2020
- Deep Reality: Art, Physics, the Unseeable and Space-Time - UNM Newsroom - October 29th, 2020
- Physicist breaks down the science of 11 iconic DC movie scenes - Insider - INSIDER - October 29th, 2020
- Q&A: Stanford MacArthur fellows talk creativity and 'publish or perish' - The Stanford Daily - October 29th, 2020
- Prime Minister's Prize for Science awarded to gravitational wave scientists - ABC News - October 29th, 2020
- Is math really the language of nature? This physicist is on a quest to find out. - News@Northeastern - October 29th, 2020
- Life and Work: Teaching in the Time of COVID: A Tale of Three Universities - All Together - Society of Women Engineers - October 29th, 2020
- COMMENTARY Covid seen to worsen poverty - The BVI Beacon - BVI Beacon - October 29th, 2020
- Quantum Time Twist Offers a Way to Create Schrdinger's Clock - Scientific American - October 24th, 2020
- Quantum Tunnels Show How Particles Can Break the Speed of Light - Quanta Magazine - October 24th, 2020
- A New Timekeeping Theory Reconciles Einstein's Relativity and Quantum Clocks - Science Times - October 24th, 2020
- Could Schrdingers cat exist in real life? We propose an experiment to find out - Scroll.in - October 24th, 2020
- Post-doctoral Fellow, Department of Physics job with THE UNIVERSITY OF HONG KONG | 230760 - Times Higher Education (THE) - October 24th, 2020
- Province gives $11.8M to U of C for quantum research, other projects - Calgary Herald - October 24th, 2020
- Physicists clock the fastest possible speed of sound - Live Science - October 24th, 2020
- Column: A new era of electric vehicles could be on the way - Gainesville Times - October 24th, 2020
- Beyond Homo Sapiens A Slightly Different Roll of the Darwinian Dice (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel - October 24th, 2020
- The many paths of muon math | symmetry magazine - Symmetry magazine - October 24th, 2020
- Sumit Das to Deliver 2019-20 A&S Distinguished Professor Lecture on 'Deconstructing Space-Time' - UKNow - October 24th, 2020
- Of Science, Philosophy and Revelation - Greater Kashmir - October 24th, 2020
- In Waterloo they're looking for nature's deepest and weirdest secrets - National Observer - October 24th, 2020
- Max Planck and the Birth of Quantum Mechanics - SciTechDaily - October 15th, 2020
- Reality Does Not Depend on the Measurer According to New Interpretation of Quantum Mechanics - SciTechDaily - October 15th, 2020
- Bringing the promise of quantum computing to nuclear physics - MSUToday - October 15th, 2020
- Could Schrdinger's cat exist in real life? Our research may soon provide the answer - The Conversation AU - October 15th, 2020
- A Force From Nothing Used to Control and Manipulate Objects - SciTechDaily - October 15th, 2020
- Facebook and Carnegie Mellon launch project to discover better ways to store renewable energy - VentureBeat - October 15th, 2020
Recent Comments