Facebook today announced a partnership with Carnegie Mellon University on a research project the Open Catalyst Project that will leverage AI to accelerate the search for electrocatalysts, or catalysts that participate in electrochemical reactions. The goal is to enable scalable renewable energy storage by speeding up quantum mechanical simulations by as high as 1,000 times.
Renewable energy sources like wind and solar generate power intermittently and require storage to transfer power from times of peak generation to times of peak demand. Without technological advances, some researchers estimated the overall penetration of solar power, for example, is capped at 30%, with costs starting to rise substantially after 20% penetration.
Historically, batteries have been too expensive to scale; an alternative is using chemical reactions to convert energy into fuels like hydrogen and ethanol, enabling power to be efficiently stored for days, weeks, or months.But this process needs catalysts to drive the chemical reactions, the discovery of which can involve complex, time-consuming quantum simulations.
Thats where Open Catalyst 2020 (OC2020) comes in. OC2020 is the result of a year-long collaboration between Facebook and the research group of Professor Zachary Ulissi at Carnegie Mellons Department of Chemical Engineering. Focusing on molecules that are important in renewable energy applications, its a dataset compiled using Facebooks datacenter-optimizing Optimus tool on spare compute cycles over the course of four months. OC2020 comprises over 1.3 million relaxations of molecular adsorptions onto surfaces the collection of electrocatalyst structures to date.
Modern catalyst design taps simulation to determine if a material is suitable for further exploration. The simulation models the interaction of a molecule with a catalysts surface, a physical process called adsorption. The adsorbed molecules i.e., adsorbates are typically the key types involved in the reactions of interest, such as OH, O2, or H2O.
Assuming catalysts are created from up to three of the 40 known metals, there are nearly 10,000 combinations of elements. And because each combination must be tested by adjusting the ratios, the possibilities expand into the billions.
Current workflows allow scientists to try three or four possible catalyst combinations per year. Quantum mechanical simulation tools like those developed by Ulissis team can provide insight into roadblocks and focus efforts on the most promising catalyst candidates, but even modern computational laboratories struggle to exceed 40,000 simulations per year.
Thats because tools such as Density Functional Theory (DFT) use a process colloquially called relaxation, where they combine the locations of the atomic nuclei with quantum mechanics to predict the energy of the system and the forces acting on each atom. The locations of the nuclei are updated to minimize the energy, consequently changing the electronic distributions and energies. This iterative process continues until the energy of the system reaches a local minima; by examining the energy of the system with the lowest energy, researchers can get a sense of how much energy is needed to drive the reaction.
The process of relaxation is computationally complex and intensive, taking hours or even days per relaxation on high-end servers. It also scales poorly when the number of atoms is increased, with both longer computation times and an increased failure rate.
Facebook and Carnegie Mellon believe machine learning techniques might be the answer because of their ability to make quick, good approximations. By taking as input the state of a system including the atom positions, element types, bond information, and more, AI algorithms can predict system properties such as energy. Efficient DFT approximations, then, could make it possible to compute all potential catalyst surfaces and binding sites through brute force before theyre verified with traditional methods.
Theres reason to believe in the efficacy of AI approaches to catalyst discovery. Already, researchers have applied models to discover intermetallic surfaces and catalysts that transform waste carbon into commercially valuable products. Using AI to search for clean energy materials was explored at a 2017 workshop organized in collaboration with the Canadian Institute for Advanced Research. And Ulissi was one of several researchers to receive a $1.2 million grant from the U.S. Department of Energy in 2019 to use machine learning and data science to design more effective catalysts for chemical processing.
Within the purview of the Open Catalyst Project, Facebook and Carnegie Mellon say theyve begun to experiment with using a small number of DFT calculations to train more efficient AI models on the physics governing quantum mechanics. Effectively, theyve been teaching the models to approximate the energy and forces of molecules based on past data.
This research direction motivated the creation of OC2020, which Facebook and Carnegie Mellon describe as much larger and better-suited for the purpose than many existing datasets. Baseline models trained on OC2020 take between 12 and 72 hours to execute a relaxation with Optimus and Facebooks servers, with each relaxation consisting of hundreds of smaller time steps. The goal is to eventually compute relaxations in seconds.
Speed isnt the only factor. At each relaxation step, the forces at play on each atom in the system must be accurately predicted. Failure to do so means compounding errors until eventually the simulation bears little to no resemblance to reality. A mistake on the scale of hundredths of an angstrom, a fraction of the size of an atom, might result in pursuing catalysts that are less efficient than we expected from our model or worse, result in us overlooking a crucial breakthrough in electrocatalysis, Larry Zitnick, a Facebook research scientist on the Open Catalyst Project, explains in a blog post. Approximating DFT calculations poses an exceedingly difficult AI problem.
Facebook and Carnegie Mellon say they hope that the Open Catalyst Project and the release of the dataset and models will inspire researchers in the broader community and jump-start efforts hindered by a lack of compute. Moreover, Zitnick postulates that the techniques applied to quantum interactions modeling problems might apply to challenges in water quality remediation, medical treatment discovery, advanced manufacturing, and geochemistry.
We are determined to enable the community to build on our work and developments in an effort to advance the state of the art as quickly as possible, Zitnick continued. The Open Catalyst Project is committed to sharing our future AI models, baselines, and evaluation metrics, as well as any future datasets we create If successful, this research has the potential to significantly accelerate the global shift towards renewable energy, removing the high costs associated with current electrocatalysts, providing a scalable alternative to expensive storage technologies like batteries, and supplying clean and sustainable power the world over.
Continued here:
- Improving LIDAR and GPS: Breaking Through the Resolution Barrier With Quantum-Limited Precision - SciTechDaily - January 18th, 2021
- Amy Noelle Parks Brings The Romance of Math and Science To YA - The Nerd Daily - January 18th, 2021
- Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily - January 18th, 2021
- If Wormholes Are Lurking in Our Universe, This Is How We Could Find Them - ScienceAlert - January 18th, 2021
- New quantum technology projects to solve mysteries of the universe - Open Access Government - January 14th, 2021
- Exploring the unanswered questions of our universe with quantum technologies - University of Birmingham - January 14th, 2021
- Wormholes may be lurking in the universe and new studies are proposing ways of finding them - The Conversation UK - January 14th, 2021
- University of Sheffield to lead multi-million pound project which could open up a new frontier in physics - University of Sheffield News - January 14th, 2021
- Raytheon UK part of team transforming the Royal Navy's technology, training and learning solutions - PRNewswire - January 14th, 2021
- Optical selection and sorting of nanoparticles according to quantum mechanical properties - Science Advances - January 14th, 2021
- The unhackable computers that could revolutionize the future - CNN - January 8th, 2021
- Birds Have a Mysterious 'Quantum Sense'. For The First Time, Scientists Saw It in Action - ScienceAlert - January 8th, 2021
- How understanding light has led to a hundred years of bright ideas - The Economist - January 8th, 2021
- Tokyo Institute of Technology: Quantum Mysteries: Probing an Unusual State in the Superconductor-Insulator Transition - India Education Diary - January 8th, 2021
- Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time - SciTechDaily - January 8th, 2021
- Illumination at the limits of knowledge - The Economist - January 8th, 2021
- The top 20 most random things that happened in 2020: Nos. 16-20 - 104.3 The Fan - January 6th, 2021
- Detective Work in Theoretical Physics: Comprehensive Review of Physics of Interacting Particles - SciTechDaily - January 6th, 2021
- New Quantum-Based Distance Measurement Method for GPS and LIDAR - AZoQuantum - January 6th, 2021
- Raytheon Technologies Appoints Marie R. Sylla-Dixon as Chief Diversity Officer to Further Advance Diversity, Equity and Inclusion Initiatives -... - January 6th, 2021
- Quantum Superposition Evidenced by Measuring Interaction of Light with Vibration - AZoQuantum - December 24th, 2020
- Superpositions The Cosmic Weirdness of Quantum Mechanics - The Daily Galaxy --Great Discoveries Channel - December 24th, 2020
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 24th, 2020
- Irish researchers reveal how Santa delivers toys to billions in one night - BreakingNews.ie - December 24th, 2020
- Eight ways Argonne advanced science in 2020 - Newswise - December 24th, 2020
- Scaling the heights of quantum computing to deliver real results - Chinadaily.com.cn - China Daily - December 24th, 2020
- MIT's quantum entangled atomic clock could still be ticking after billions of years - SYFY WIRE - December 24th, 2020
- Matter Deconstructed: The Observer Effect and Photography - PetaPixel - December 24th, 2020
- Everything you need to know about quantum physics (almost ... - December 21st, 2020
- Quantum mechanics - Wikipedia - December 21st, 2020
- Six Things Everyone Should Know About Quantum Physics - December 21st, 2020
- Counter-Intuitive Quantum Mechanics: State of Vibration That Exists Simultaneously at Two Different Times - SciTechDaily - December 21st, 2020
- A state of vibration that exists simultaneously at two different times - Tech Explorist - December 21st, 2020
- This Incredible Particle Only Arises in Two Dimensions - Popular Mechanics - December 21st, 2020
- Quantum Mechanics, the Mind-Body Problem and Negative Theology - Scientific American - December 17th, 2020
- Quantum Interference Phenomenon Identified That Occurs Through Time - SciTechDaily - December 17th, 2020
- 9 Most Confusing Sci-Fi Movies That Feel Like You Need a PhD in Quantum Physics - FandomWire - December 17th, 2020
- Expanding the Scope of Electronic-Structure Theory - Physics - December 17th, 2020
- Physicists attempt to unify all forces of nature and rectify Einstein's biggest failure - Livescience.com - December 17th, 2020
- Black dwarf supernovae: The last explosions in the Universe - SYFY WIRE - December 17th, 2020
- Orford 17-year-old is among brightest young minds in north west - Warrington Guardian - December 17th, 2020
- Meet the kaon - Symmetry magazine - November 10th, 2020
- There Are Places in the World Where Rules Are Less Important Than Kindness by Carlo Rovelli review - The Guardian - November 10th, 2020
- Digging into the 3D Quantum Hall Effect - Physics - November 10th, 2020
- Physicists Circumvent 178-Year Old Theory to Cancel Magnetic Fields - SciTechDaily - November 10th, 2020
- A Modem With a Tiny Mirror Cabinet Could Help Connect The Quantum Internet - ScienceAlert - November 8th, 2020
- Quantum Technology: Harnessing the Power of Quantum Mechanics - Analytics Insight - November 8th, 2020
- Will the Universe Remember Us after We're Gone? - Scientific American - November 8th, 2020
- Threat of Quantum Computing to Bitcoin Should be Taken Seriously, But theres Enough Time to Upgrade Current Security Systems, Experts Claim -... - November 8th, 2020
- Pablo Jarillo-Herrero receives the Lise Meitner Distinguished Lecture and Medal - MIT News - November 8th, 2020
- Lighting up the ion trap - MIT News - November 8th, 2020
- For Thomas Searles, a passion for people and science at HBCUs and MIT - MIT News - November 8th, 2020
- University of Kansas Team Explore Heavy-Ion Particle Physics - Pagosa Daily Post - November 8th, 2020
- Reimagining the laser: new ideas from quantum theory could herald a revolution - The Conversation AU - October 29th, 2020
- Deep Reality: Art, Physics, the Unseeable and Space-Time - UNM Newsroom - October 29th, 2020
- Physicist breaks down the science of 11 iconic DC movie scenes - Insider - INSIDER - October 29th, 2020
- Q&A: Stanford MacArthur fellows talk creativity and 'publish or perish' - The Stanford Daily - October 29th, 2020
- Prime Minister's Prize for Science awarded to gravitational wave scientists - ABC News - October 29th, 2020
- Is math really the language of nature? This physicist is on a quest to find out. - News@Northeastern - October 29th, 2020
- Life and Work: Teaching in the Time of COVID: A Tale of Three Universities - All Together - Society of Women Engineers - October 29th, 2020
- COMMENTARY Covid seen to worsen poverty - The BVI Beacon - BVI Beacon - October 29th, 2020
- Quantum Time Twist Offers a Way to Create Schrdinger's Clock - Scientific American - October 24th, 2020
- Quantum Tunnels Show How Particles Can Break the Speed of Light - Quanta Magazine - October 24th, 2020
- A New Timekeeping Theory Reconciles Einstein's Relativity and Quantum Clocks - Science Times - October 24th, 2020
- Could Schrdingers cat exist in real life? We propose an experiment to find out - Scroll.in - October 24th, 2020
- Post-doctoral Fellow, Department of Physics job with THE UNIVERSITY OF HONG KONG | 230760 - Times Higher Education (THE) - October 24th, 2020
- Province gives $11.8M to U of C for quantum research, other projects - Calgary Herald - October 24th, 2020
- Physicists clock the fastest possible speed of sound - Live Science - October 24th, 2020
- Column: A new era of electric vehicles could be on the way - Gainesville Times - October 24th, 2020
- Beyond Homo Sapiens A Slightly Different Roll of the Darwinian Dice (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel - October 24th, 2020
- Diamonds Are a Quantum Scientist's Best Friend: Discovery May Revolutionize the High-Tech Industry - SciTechDaily - October 24th, 2020
- The many paths of muon math | symmetry magazine - Symmetry magazine - October 24th, 2020
- Sumit Das to Deliver 2019-20 A&S Distinguished Professor Lecture on 'Deconstructing Space-Time' - UKNow - October 24th, 2020
- Of Science, Philosophy and Revelation - Greater Kashmir - October 24th, 2020
- In Waterloo they're looking for nature's deepest and weirdest secrets - National Observer - October 24th, 2020
- Max Planck and the Birth of Quantum Mechanics - SciTechDaily - October 15th, 2020
- Reality Does Not Depend on the Measurer According to New Interpretation of Quantum Mechanics - SciTechDaily - October 15th, 2020
- Bringing the promise of quantum computing to nuclear physics - MSUToday - October 15th, 2020
- Could Schrdinger's cat exist in real life? Our research may soon provide the answer - The Conversation AU - October 15th, 2020
- A Force From Nothing Used to Control and Manipulate Objects - SciTechDaily - October 15th, 2020
Recent Comments