Category Archives: Machine Learning

Machine Learning vs Predictive Analytics: Are they same? – Analytics Insight

Artificial Intelligence (AI) has been trending in headlines for quite some time for all exciting reasons. While it is not a new buzzword in the technical nor business world, it is successfully transforming industries around the globe. To date, enterprises, firms and start-ups are racing to adopt AI in their business culture. This emerging technology has blessed us with improved computing and analysis of data, cloud-based services and many more. The applications are so vast that, business leaders might find themselves caught up in confusion on what to implement for their business practices and get maximized ROI.

Well, as per the most preferred options, machine learning and predictive analytics are used to cater to such needs. Thanks to them, companies can extract relevant insights about their clients, market and businesses with a fraction of operational costs. Although they are both centered on effectual data processing, machine learning (ML) and predictive analytics are sometimes used interchangeably. Predictive analysis works on the lines of machine learning, yet they are different terms with varied potential.

Machine Learning is an AI methodology where algorithms are given data and asked to process it without predetermined rules. This allows the machine learning models to make assumptions, test them and learn autonomously, without being explicitly programmed. It is accomplished by feeding the model with data and information in the form of observations and real-world interactions. E.g. Machine learning is used for understanding the difference between spam, malicious comments, and positive comments on Reddit by studying a given set data of comments existing on the social community discussion page.

There are two types of machine learning:supervisedandunsupervised.

Supervised or Assisted machine learning requires an operator to feed pre-defined patterns, known behaviors, and inputs from human operators to help models learn more accurately.It helps the machine model comprehend the kind of output desired and allows the operator to gain control of the process. On the other hand, unsupervised or unassisted machine learning depends on the machines ability to identify those patterns and behaviors from data streams as no training data is provided. One instance of its application is employing it for intelligent profiling to find parallels between a restaurant chains most valuable customers.

Predictive Analytics, whereas, refers to the process of analyzing historical data,as well as existing external data to find patterns and behaviors. Although an advanced form of AI analytics, it existed much before the birth of AI. Mathematician, Alan Turing harnessed it to decode encrypted German messages (Enigma Code) during World War II.

It also automates forecasting with substantial accuracy so that business firms can focus on other crucial daily tasks. However, since the patterns remain the same in most cases, predictive analytics is more static and less adaptive than machine learning. Therefore, any change to the analysis model or parameters must be done manually by data scientists. Its common adopters are banks and Fintech industries. There these analytics tools are used to detect and reduce fraud, determine market risk, identify prospects, and more.

One cannot possibly decide which of the two is the better option for business; as their use cases are not the same. For example, one of the business applications of machine learning is to measure real-time employee satisfaction while predictive analytics is better suited for fields like marketing campaign optimization. Strategies based on predictive analysis can empower brands to identify, engage, and secure suitable markets for their services and products, and boost efficiency and ROIof marketing campaigns. This is possible as here analysis is focused on data streams that require specific pre-defined parameters. The software can display foresight on KPIs, which includes revenue, churn rate, conversion rate, and other metrics.

As mentioned earlier, it is an indispensable asset in Fintech and banking sectors. It is also used to gain insight into their customers buying habits.

Machine learning iscompetent in scanning business assets to locate security risks and origins of possible threats, thereby playing a significant role in cyber-security. They further help in increasing the value of user-generated content (UGC)by skimming out the bad, spamming, and hate content. Also, by observing and understanding customer behavior, it can determine the success of an advertisements performance and speed up product discovery.

Apart from their apparent difference, both these branches of AI hold immense and impressive possibilities. They can be adjusted to match a projects scale, and accordingly include tools that align most in achieving the project goals.Companies must act quickly, lest they risk being trampled by their rivals who have already implemented them. Also, it is important to remember that all predictive analytics methods are not part of machine learning.

Continued here:
Machine Learning vs Predictive Analytics: Are they same? - Analytics Insight

AI experts say research into algorithms that claim to predict criminality must end – The Verge

A coalition of AI researchers, data scientists, and sociologists has called on the academic world to stop publishing studies that claim to predict an individuals criminality using algorithms trained on data like facial scans and criminal statistics.

Such work is not only scientifically illiterate, says the Coalition for Critical Technology, but perpetuates a cycle of prejudice against Black people and people of color. Numerous studies show the justice system treats these groups more harshly than white people, so any software trained on this data simply amplifies and entrenches societal bias and racism.

Lets be clear: there is no way to develop a system that can predict or identify criminality that is not racially biased because the category of criminality itself is racially biased, write the group. Research of this nature and its accompanying claims to accuracy rest on the assumption that data regarding criminal arrest and conviction can serve as reliable, neutral indicators of underlying criminal activity. Yet these records are far from neutral.

An open letter written by the Coalition was drafted in response to news that Springer, the worlds largest publisher of academic books, planned to publish just such a study. The letter, which has now been signed by 1,700 experts, calls on Springer to rescind the paper and for other academic publishers to refrain from publishing similar work in the future.

At a time when the legitimacy of the carceral state, and policing in particular, is being challenged on fundamental grounds in the United States, there is high demand in law enforcement for research of this nature, write the group. The circulation of this work by a major publisher like Springer would represent a significant step towards the legitimation and application of repeatedly debunked, socially harmful research in the real world.

In the study in question, titled A Deep Neural Network Model to Predict Criminality Using Image Processing, researchers claimed to have created a facial recognition system that was capable of predicting whether someone is likely going to be a criminal ... with 80 percent accuracy and no racial bias, according to a now-deleted press release. The papers authors included Phd student and former NYPD police officer Jonathan W. Korn.

In response to the open letter, Springer said it would not publish the paper, according to MIT Technology Review. The paper you are referring to was submitted to a forthcoming conference for which Springer had planned to publish the proceedings, said the company. After a thorough peer review process the paper was rejected.

However, as the Coalition for Critical Technology makes clear, this incident is only one example in a wider trend within data science and machine learning, where researchers use socially-contingent data to try and predict or classify complex human behavior.

In one notable example from 2016, researchers from Shanghai Jiao Tong University claimed to have created an algorithm that could also predict criminality from facial features. The study was criticized and refuted, with researchers from Google and Princeton publishing a lengthy rebuttal warning that AI researchers were revisiting the pseudoscience of physiognomy. This was a discipline was founded in the 19th century by Cesare Lombroso, who claimed he could identify born criminals by measuring the dimensions of their faces.

When put into practice, the pseudoscience of physiognomy becomes the pseudoscience of scientific racism, wrote the researchers. Rapid developments in artificial intelligence and machine learning have enabled scientific racism to enter a new era, in which machine-learned models embed biases present in the human behavior used for model development.

The 2016 paper also demonstrated how easy it is for AI practitioners to fool themselves into thinking theyve found an objective system of measuring criminality. The researchers from Google and Princeton noted that, based on the data shared in the paper, all the non-criminals appeared to be smiling and wearing collared shirts and suits, while none of the (frowning) criminals were. Its possible this simple and misleading visual tell was guiding the algorithms supposed sophisticated analysis.

The Coalition for Critical Technologys letter comes at a time when movements around the world are highlighting issues of racial justice, triggered by the killing of George Floyd by law enforcement. These protests have also seen major tech companies pull back on their use of facial recognition systems, which research by Black academics has shown is racially biased.

The letters authors and signatories call on the AI community to reconsider how it evaluates the goodness of its work thinking not just about metrics like accuracy and precision, but about the social affect such technology can have on the world. If machine learning is to bring about the social good touted in grant proposals and press releases, researchers in this space must actively reflect on the power structures (and the attendant oppressions) that make their work possible, write the authors.

Read more from the original source:
AI experts say research into algorithms that claim to predict criminality must end - The Verge

Machine Learning as a Service Market How the Industry Will Witness Substantial Growth in the Upcoming years to 2023 – Cole of Duty

Premium market insights delivers well-researched industry-wide information on the Machine Learning as a Service market. It studies the markets essential aspects such as top participants, expansion strategies, business models, and other market features to gain improved market insights. Additionally, it focuses on the latest advancements in the sector and technological development, executive tools, and tactics that can enhance the performance of the sectors.

Request Sample Copy of Machine Learning as a Service Market at: https://www.premiummarketinsights.com/sample/AMR00013469

Top Key Players:

Key players that operate in the machine learning as a service market are Google Inc., SAS Institute Inc., FICO, Hewlett Packard Enterprise, Yottamine Analytics, Amazon Web Services, BigML, Inc., Microsoft Corporation, Predictron Labs Ltd., and IBM Corporation

Scope of the Report

The research on the Machine Learning as a Service market concentrates on extracting valuable data on swelling investment pockets, significant growth opportunities, and major market vendors to help understand business owners what their competitors are doing best to stay ahead in the competition. The research also segments the Machine Learning as a Service market on the basis of end user, product type, application, and demography for the forecast period 20192023. Detailed analysis of critical aspects such as impacting factors and competitive landscape are showcased with the help of vital resources, which include charts, tables, and infographics.

For more clarity on the real potential of the Machine Learning as a Service market for the forecast period 20192023, the study provides vital intelligence on major opportunities, threats, and challenges posed by the industry. Additionally, a strong emphasis is laid on the weaknesses and strengths of a few prominent players operating in the same market. Quantitative assessment of the recent momentum brought about by events such as collaborations, acquisition and mergers, product launches and technology innovation empower product owners, as well as marketing professionals and business analysts make a profitable decision to reduce cost and increase their customer base.

!!! Limited Time DISCOUNT Available!!! Get Your Copy at Discounted [emailprotected] https://www.premiummarketinsights.com/discount/AMR00013469

Our reports will help clients solve the following issues:

Insecurity about the future:

Our research and insights help our clients anticipate upcoming revenue compartments and growth ranges. This help our client invest or divest their assets.

Understanding market opinions:

It is extremely vital to have an impartial understanding of market opinions for a strategy. Our insights provide a keen view on the market sentiment. We keep this reconnaissance by engaging with Key Opinion Leaders of a value chain of each industry we track.

Understanding the most reliable investment centers:

Our research ranks investment centers of market by considering their future demands, returns, and profit margins. Our clients can focus on most prominent investment centers by procuring our market research.

Evaluating potential business partners:

Our research and insights help our clients in identifying compatible business partners.

The research provides answers to the following key questions:

Interested in purchasing this Report? Click here @ https://www.premiummarketinsights.com/inquiry/AMR00013469

Geographically, this report focuses on product sales, value, market share, and growth opportunity in key regions such as United States, Europe, China, Japan, Southeast Asia, and India.

About Premium market insights:

Premiummarketinsights.comis a one stop shop of market research reports and solutions to various companies across the globe. We help our clients in their decision support system by helping them choose most relevant and cost effective research reports and solutions from various publishers. We provide best in class customer service and our customer support team is always available to help you on your research queries.

Contact US:

Sameer Joshi Call: US: +1-646-491-9876, Apac: +912067274191Email: [emailprotected]

See the rest here:
Machine Learning as a Service Market How the Industry Will Witness Substantial Growth in the Upcoming years to 2023 - Cole of Duty

If AI is going to help us in a crisis, we need a new kind of ethics – MIT Technology Review

What opportunities have we missed by not having these procedures in place?

Its easy to overhype whats possible, and AI was probably never going to play a huge role in this crisis. Machine-learning systems are not mature enough.

But there are a handful of cases in which AI is being tested for medical diagnosis or for resource allocation across hospitals. We might have been able to use those sorts of systems more widely, reducing some of the load on health care, had they been designed from the start with ethics in mind.

With resource allocation in particular, you are deciding which patients are highest priority. You need an ethical framework built in before you use AI to help with those kinds of decisions.

So is ethics for urgency simply a call to make existing AI ethics better?

Thats part of it. The fact that we dont have robust, practical processes for AI ethics makes things more difficult in a crisis scenario. But in times like this you also have greater need for transparency. People talk a lot about the lack of transparency with machine-learning systems as black boxes. But there is another kind of transparency, concerning how the systems are used.

This is especially important in a crisis, when governments and organizations are making urgent decisions that involve trade-offs. Whose health do you prioritize? How do you save lives without destroying the economy? If an AI is being used in public decision-making, transparency is more important than ever.

What needs to change?

We need to think about ethics differently. It shouldnt be something that happens on the side or afterwardssomething that slows you down. It should simply be part of how we build these systems in the first place: ethics by design.

I sometimes feel ethics is the wrong word. What were saying is that machine-learning researchers and engineers need to be trained to think through the implications of what theyre building, whether theyre doing fundamental research like designing a new reinforcement-learning algorithm or something more practical like developing a health-care application. If their work finds its way into real-world products and services, what might that look like? What kinds of issues might it raise?

Some of this has started already. We are working with some early-career AI researchers, talking to them about how to bring this way of thinking to their work. Its a bit of an experiment, to see what happens. But even NeurIPS [a leading AI conference] now asks researchers to include a statement at the end of their papers outlining potential societal impacts of their work.

Youve said that we need people with technical expertise at all levels of AI design and use. Why is that?

Im not saying that technical expertise is the be-all and end-all of ethics, but its a perspective that needs to be represented. And I dont want to sound like Im saying all the responsibility is on researchers, because a lot of the important decisions about how AI gets used are made further up the chain, by industry or by governments.

But I worry that the people who are making those decisions dont always fully understand the ways it might go wrong. So you need to involve people with technical expertise. Our intuitions about what AI can and cant do are not very reliable.

What you need at all levels of AI development are people who really understand the details of machine learning to work with people who really understand ethics. Interdisciplinary collaboration is hard, however. People with different areas of expertise often talk about things in different ways. What a machine-learning researcher means by privacy may be very different from what a lawyer means by privacy, and you can end up with people talking past each other. Thats why its important for these different groups to get used to working together.

Youre pushing for a pretty big institutional and cultural overhaul. What makes you think people will want to do this rather than set up ethics boards or oversight committeeswhich always make me sigh a bit because they tend to be toothless?

Yeah, I also sigh. But I think this crisis is forcing people to see the importance of practical solutions. Maybe instead of saying, Oh, lets have this oversight board and that oversight board, people will be saying, We need to get this done, and we need to get it done properly.

Read more:
If AI is going to help us in a crisis, we need a new kind of ethics - MIT Technology Review

Here’s Why Enterprise AI Is Being Drafted to Fight Stimulus Fraud – EnterpriseAI

Without an enterprise AI approach, prosecutors see fraud in the federal governments Paycheck Protection Program, they admit there are too many scams to count, let alone stop. Organized crime is scheming to take a growing cut of the emergency spending in the CARES Act. The rules of stimulus programs are constantly changing, making it hard to know who should and shouldnt obtain that financing or how they should spend it.

This sounds like a job for enterprise artificial intelligence, and banks are indeed turning to it for help. But what qualifies as AI in quelling stimulus fraud, and how exactly would it work? It if works at all.

Rules engines slipping under the waves

It is clear that common approaches, often billed as machine learning and sometimes as artificial intelligence, fail to address todays stimulus fraud-fighting needs.

A banks anti-fraud officer has added new rules to their system for flagging activity that looks suspicious, often based on dated government law enforcement data. Theyve introduced party and account level monitoring. They have tuned their system as often as they can. But under the pressures of the massive numbers of stimulus program checks, their alert backlog is increasing, their investigators are fatiguing, and their risk is escalating.

Buried under unmanageable volumes of false positives, risk officers are unable to identify false negatives. These are the worst, the existing bank customer for instance who has always stayed out of the spotlight, but with loosened know your customer rules under the stimulus program, they press their advantage.

Bank officers are also striving to meet the budgetary cost cutting measures imposed on them as their institutions try to keep compliance costs under control. These officers do the only thing they can, attempt to tune their thresholds once again, only to recognize that they can no longer tune their way out of trouble. K-Means clustering, as a safe go-to, does not provide the accuracy or uplift banks officers need.

Starting with basics

Simply put, anti-fraud teams need alerts to be more accurate and false positives rare. It gives investigators valuable context, so they can focus on what matters most, genuinely suspicious behavior.

An augmented anti-fraud process applies intelligence at key lever points to produce significantly more accurate alerts. Its designed in three parts. They are system optimization, emerging behaviors detection, and new entity risk detection. This allows you to take advantage of just what you need, when you need it. That is, you get only what you need to improve the parts of your process that are weakest.

Knowns knowns, unknowns unknowns, and the rest

Optimizing a system is done best by focusing on improving the effectiveness in discovering known knowns. The key is to optimize an existing system with greater segmentation accuracy of all parties and improve the speed, accuracy and effectiveness of your periodic threshold tuning process.

Emerging behavior identification should be focused on unknown knowns and keeping your system relevant. Introduce dynamic, intelligent tuning and visibility to emerging behaviors to your process and retire the periodic projects that are so costly, cumbersome and immediately outdated.

New entity risk detection means discovering net new unknown unknown risks and vulnerabilities previously missed or not thought about. Identify and be alerted to new risks. Not just at a loan level, or account, or customer, but for any context, party or hierarchy and not just for stopping fraud, but for cyber, surveillance, conduct, trafficking, liquidity exposure, credit risk and beyond.

Segmenting for success

The false-positive problem in fraud detection is primarily a function of poor segmentation of the input data. Even sophisticated financial services institutions using machine learning for detecting fraud can suffer from low accuracy and high false negatives. This is because open source machine learning techniques analyze data in large groups and cannot get specific enough to correctly surface genuine suspicious behavior.

A typical segmentation process produces uneven groups, and this means that thresholds must be set artificially low resulting in a significant number of false positives. Smart segmentation is the crucial first step for a system to accurately detect suspicious patterns, without needlessly flagging expected ones. The process falls short when institutions only sort static account information using pre-determined rules.

A good enterprise AI approach should ingest the greatest volume and variety of data available - about customers, counterparties and transactions - and then apply objective machine learning to create the most refined and up-to-date segments possible. Topological data analysis is perhaps one of the best tools for this given its ability to handle multiple variables, but its also not well known, even in the artificial intelligence field.

The crucial point is that enterprise grade anti-fraud AI needs to be able to assign, and reassign parties to segments based on their actual behavior, revealed in their real transactions and true inter-relationships, over time. An intelligent segmentation process should deliver far more granular and uniform groups, resulting in higher thresholds and fewer false positives. In addition, these granular groups should catch false negatives.

Paying dividends

The unknown questions that the data and proper enterprise AI can answer will create new opportunities and growth areas, too. High performance enterprise AI cuts the time it takes to produce insights, grows along with datasets, explores automatically and without bias, incorporates new data into older analyses and can actually reduce hardware costs.

Bank clients wont necessarily appreciate these secondary machine learning benefits at first. They are measures that help managers detect and track patterns of fraud, not marketing tools. But they can provide winning insights and defensive alerts that will protect a companys brand, public relations and image.

About the Author

Simon Moss is CEO of Symphony AyasdiAI, an enterprise artificial intelligence company serving financial services and other industries.

Related

See the original post:
Here's Why Enterprise AI Is Being Drafted to Fight Stimulus Fraud - EnterpriseAI

Effects of the Alice Preemption Test on Machine Learning Algorithms – IPWatchdog.com

According to the approach embraced by McRO and BASCOM, while machine learning algorithms bringing a slight improvement can pass the eligibility test, algorithms paving the way for a whole new technology can be excluded from the benefits of patent protection simply because there are no alternatives.

In the past decade or so, humanity has gone through drastic changes as Artificial intelligence (AI) technologies such as recommendation systems and voice assistants have seeped into every facet of our lives. Whereas the number of patent applications for AI inventions skyrocketed, almost a third of these applications are rejected by the U.S. Patent and Trademark Office (USPTO) and the majority of these rejections are due to the claimed invention being ineligible subject matter.

The inventive concept may be attributed to different components of machine learning technologies, such as using a new algorithm, feeding more data, or using a new hardware component. However, this article will exclusively focus on the inventions achieved by Machine Learning (M.L.) algorithms and the effect of the preemption test adopted by U.S. courts on the patent-eligibility of such algorithms.

Since the Alice decision, the U.S. courts have adopted different views related to the role of the preemption test in eligibility analysis. While some courts have ruled that lack of preemption of abstract ideas does not make an invention patent-eligible [Ariosa Diagnostics Inc. v. Sequenom Inc.], others have not referred to it at all in their patent eligibility analysis. [Enfish LLC v. Microsoft Corp., 822 F.3d 1327]

Contrary to those examples, recent cases from Federal Courts have used the preemption test as the primary guidance to decide patent eligibility.

In McRO, the Federal Circuit ruled that the algorithms in the patent application prevent pre-emption of all processes for achieving automated lip-synchronization of 3-D characters. The court based this conclusion on the evidence of availability of an alternative set of rules to achieve the automation process other than the patented method. It held that the patent was directed to a specific structure to automate the synchronization and did not preempt the use of all of the rules for this method given that different sets of rules to achieve the same automated synchronization could be implemented by others.

Similarly, The Court in BASCOM ruled that the claims were patent eligible because they recited a specific, discrete implementation of the abstract idea of filtering contentand they do not preempt all possible ways to implement the image-filtering technology.

The analysis of the McRO and BASCOM cases reveals two important principles for the preemption analysis:

Machine learning can be defined as a mechanism which searches for patterns and which feeds intelligence into a machine so that it can learn from its own experience without explicit programming. Although the common belief is that data is the most important component in machine learning technologies, machine learning algorithms are equally important to proper functioning of these technologies and their importance cannot be understated.

Therefore, inventive concepts enabled by new algorithms can be vital to the effective functioning of machine learning systemsenabling new capabilities, making systems faster or more energy efficient are examples of this. These inventions are likely to be the subject of patent applications. However, the preemption test adopted by courts in the above-mentioned cases may lead to certain types of machine learning algorithms being held ineligible subject matter. Below are some possible scenarios.

The first situation relates to new capabilities enabled by M.L. algorithms. When a new machine learning algorithm adds a new capability or enables the implementation of a process, such as image recognition, for the first time, preemption concerns will likely arise. If the patented algorithm is indispensable for the implementation of that technology, it may be held ineligible based on the McRO case. This is because there are no other alternative means to use this technology and others would be prevented from using this basic tool for further development.

For example, a M.L. algorithm which enabled the lane detection capability in driverless cars may be a standard/must-use algorithm in the implementation of driverless cars that the court may deem patent ineligible for having preemptive effects. This algorithm clearly equips the computer vision technology with a new capability, namely, the capability to detect boundaries of road lanes. Implementation of this new feature on driverless cars would not pass the Alice test because a car is a generic tool, like a computer, and even limiting it to a specific application may not be sufficient because it will preempt all uses in this field.

Should the guidance of McRO and BASCOM be followed, algorithms that add new capabilities and features may be excluded from patent protection simply because there are no other available alternatives to these algorithms to implement the new capabilities. These algorithms use may be so indispensable for the implementation of that technology that they are deemed to create preemptive effects.

Secondly, M.L. algorithms which are revolutionary may also face eligibility challenges.

The history of how deep neural networks have developed will be explained to demonstrate how highly-innovative algorithms may be stripped of patent protection because of the preemption test embraced by McRO and subsequent case law.

Deep Belief Networks (DBNs) is a type of Artificial Neural Networks (ANNs). The ANNs were trained with a back-propagation algorithm, which adjusts weights by propagating the outputerror backwardsthrough the network However, the problem with the ANNs was that as the depth was increased by adding more layers, the error vanished to zero and this severely affected the overall performance, resulting in less accuracy.

From the early 2000s, there has been a resurgence in the field of ANNs owing to two major developments: increased processing power and more efficient training algorithms which made trainingdeep architecturesfeasible. The ground-breaking algorithm which enabled the further development of ANNs in general and DBNs in particular was Hintons greedy training algorithm.

Thanks to this new algorithm, DBNs has been applicable to solve a variety of problems that were the roadblock before the use of new technologies, such as image processing,natural language processing, automatic speech recognition, andfeature extractionand reduction.

As can be seen, the Hiltons fast learning algorithm revolutionized the field of machine learning because it made the learning easier and, as a result, technologies such as image processing and speech recognition have gone mainstream.

If patented and challenged at court, Hiltons algorithm would likely be invalidated considering previous case law. In McRO, the court reasoned that the algorithm at issue should not be invalidated because the use of a set of rules within the algorithm is not a must and other methods can be developed and used. Hiltons algorithm will inevitably preempt some AI developers from engaging with further development of DBNs technologies because this algorithm is a base algorithm, which made the DBNs plausible to implement so that it may be considered as a must. Hiltons algorithm enabled the implementation of image recognition technologies and some may argue based on McRO and Enfish that Hiltons algorithm patent would be preempting because it is impossible to implement image recognition technologies without this algorithm.

Even if an algorithm is a must-use for a technology, there is no reason to exclude it from patent protection. Patent law inevitably forecloses certain areas from further development by granting exclusive rights through patents. All patents foreclose competitors to some extent as a natural consequence of exclusive rights.

As stated in the Mayo judgment, exclusive rights provided by patents can impede the flow of information that might permit, indeed spur, invention, by, for example, raising the price of using the patented ideas once created, requiring potential users to conduct costly and time-consuming searches of existing patents and pending patent applications, and requiring the negotiation of complex licensing arrangements.

The exclusive right granted by a patents is only one side of the implicit agreement between the society and the inventor. In exchange for the benefit of the exclusivity, inventors are required to disclose their invention to the public so this knowledge becomes public, available for use in further research and for making new inventions building upon the previous one.

If inventors turn to trade secrets to protect their inventions due to the hostile approach of patent law to algorithmic inventions, the knowledge base in this field will narrow, making it harder to build upon previous technology. This may lead to the slow-down and even possible death of innovation in this industry.

The fact that an algorithm is a must-use, should not lead to the conclusion that it cannot be patented. Patent rights may even be granted for processes which have primary and even sole utility in research. Literally, a microscope is a basic tool for scientific work, but surely no one would assert that a new type of microscope lay beyond the scope of the patent system. Even if such a microscope is used widely and it is indispensable, it can still be given patent protection.

According to the approach embraced by McRO and BASCOM, while M.L. algorithms bringing a slight improvement, such as a higher accuracy and higher speed, can pass the eligibility test, algorithms paving the way for a whole new technology can be excluded from the benefits of patent protection simply because there are no alternatives to implement that revolutionary technology.

Considering that the goal of most AI inventions is to equip computers with new capabilities or bring qualitative improvements to abilities such as to see or to hear or even to make informed judgments without being fed complete information, most AI inventions would have the higher likelihood of being held patent ineligible. Applying this preemption test to M.L. algorithms would put such M.L. algorithms outside of patent protection.

Thus, a M.L. algorithm which increases accuracy by 1% may be eligible, while a ground-breaking M.L. algorithm which is a must-use because it covers all uses in that field may be excluded from patent protection. This would result in rewarding slight improvements with a patent but disregarding highly innovative and ground-breaking M.L. algorithms. Such a consequence is undesirable for the patent system.

This also may result in deterring the AI industry from bringing innovation in fundamental areas. As an undesired consequence, innovation efforts may shift to small improvements instead of innovations solving more complex problems.

Image Source:Author: nils.ackermann.gmail.comImage ID:102390038

Read this article:
Effects of the Alice Preemption Test on Machine Learning Algorithms - IPWatchdog.com

Googles latest experiment is Keen, an automated, machine-learning based version of Pinterest – TechCrunch

A new project called Keen is launching today from Googles in-house incubator for new ideas, Area 120, to help users track their interests. The app is like a modern rethinking of the Google Alerts service, which allows users to monitor the web for specific content. Except instead of sending emails about new Google Search results, Keen leverages a combination of machine learning techniques and human collaboration to help users curate content around a topic.

Each individual area of interest is called a keen a word often used to reference someone with an intellectual quickness.

The idea for the project came about after co-founder C.J. Adams realized he was spending too much time on his phone mindlessly browsing feeds and images to fill his downtime. He realized that time could be better spent learning more about a topic he was interested in perhaps something he always wanted to research more or a skill he wanted to learn.

To explore this idea, he and four colleagues at Google worked in collaboration with the companys People and AI Research (PAIR) team, which focuses on human-centered machine learning, to create what has now become Keen.

To use Keen, which is available both on the web and on Android, you first sign in with your Google account and enter in a topic you want to research. This could be something like learning to bake bread, bird watching or learning about typography, suggests Adams in an announcement about the new project.

Keen may suggest additional topics related to your interest. For example, type in dog training and Keen could suggest dog training classes, dog training books, dog training tricks, dog training videos and so on. Click on the suggestions you want to track and your keen is created.

When you return to the keen, youll find a pinboard of images linking to web content that matches your interests. In the dog training example, Keen found articles and YouTube videos, blog posts featuring curated lists of resources, an Amazon link to dog training treats and more.

For every collection, the service uses Google Search and machine learning to help discover more content related to the given interest. The more you add to a keen and organize it, the better these recommendations become.

Its like an automated version of Pinterest, in fact.

Once a keen is created, you can then optionally add to the collection, remove items you dont want and share the Keen with others to allow them to also add content. The resulting collection can be either public or private. Keen can also email you alerts when new content is available.

Google, to some extent, already uses similar techniques to power its news feed in the Google app. The feed, in that case, uses a combination of items from your Google Search history and topics you explicitly follow to find news and information it can deliver to you directly on the Google apps home screen. Keen, however, isnt tapping into your search history. Its only pulling content based on interests you directly input.

And unlike the news feed, a keen isnt necessarily focused only on recent items. Any sort of informative, helpful information about the topic can be returned. This can include relevant websites, events, videos and even products.

But as a Google project and one that asks you to authenticate with your Google login the data it collects is shared with Google. Keen, like anything else at Google, is governed by the companys privacy policy.

Though Keen today is a small project inside a big company, it represents another step toward the continued personalization of the web. Tech companies long since realized that connecting users with more of the content that interests them increases their engagement, session length, retention and their positive sentiment for the service in question.

But personalization, unchecked, limits users exposure to new information or dissenting opinions. It narrows a persons worldview. It creates filter bubbles and echo chambers. Algorithmic-based recommendations can send users searching for fringe content further down dangerous rabbit holes, even radicalizing them over time. And in extreme cases, radicalized individuals become terrorists.

Keen would be a better idea if it were pairing machine-learning with topical experts. But it doesnt add a layer of human expertise on top of its tech, beyond those friends and family you specifically invite to collaborate, if you even choose to. That leaves the system wanting for better human editorial curation, and perhaps the need for a narrower focus to start.

Original post:
Googles latest experiment is Keen, an automated, machine-learning based version of Pinterest - TechCrunch

Deploying Machine Learning Has Never Been This Easy – Analytics India Magazine

According to PwC, AIs potential global economic impact will reach USD 15.7 trillion by 2030. However, the enterprises who look to deploy AI are often hampered by the lack of time, trust and talent. Especially, with the highly regulated sectors such as healthcare and finance, convincing the customers to imbibe AI methodologies is an uphill task.

Of late, the AI community has seen a sporadic shift in AI adoption with the advent of AutoML tools and introduction of customised hardware to cater to the needs of the algorithms. One of the most widely used AutoML tools in the industry is H2O Driverless AI. And, when it comes to hardware Intel has been consistently updating its tool stack to meet the high computational demands of the AI workflows.

Now H2O.ai and Intel, two companies who have been spearheading the democratisation of the AI movement, join hands to develop solutions that leverage software and hardware capabilities respectively.

AI and machine-learning workflows are complex and enterprises need more confidence in the validity of their AI models than a typical black-box environment can provide. The inexplicability and the complexity of feature engineering can be daunting to the non-experts. So far AutoML has proven to be the one stop solution to all these problems. These tools have alleviated the challenges by providing automated workflows, code ready deployable models and many more.

H2O.ai especially, has pioneered in the AutoML segment. They have developed an open source, distributed in-memory machine learning platform with linear scalability that includes a module called H2OAutoML, which can be used for automating the machine learning workflow, that includes automatic training and tuning of many models within a user-specified time-limit.

Whereas, H2O.ais flagship product Driverless AI can be used to fully automate some of the most challenging and productive tasks in applied data science such as feature engineering, model tuning, model ensembling and model deployment.

But, for these AI based tools to work seamlessly, they need the backing of hardware that is dedicated to handle the computational intensity of machine learning operations.

Intel has been at the forefront of digital revolution for over half a century. Today, Intel flaunts a wide range of technologies, including its Xeon Scalable processors, Optane Solid State Drives and optimized Intel software libraries that bring in a much needed mix of enhanced performance, AI inference, network functions, persistent memory bandwidth, and security.

Integrating H2O.ais software portfolio with hardware and software technologies from Intel has resulted in solutions that can handle almost all the woes of an AI enterprise from automated workflows to explainability to production ready code that can be deployed anywhere.

For example, H2O Driverless AI, an automatic machine-learning platform enables data science experts and beginners to streamline their AI tasks within minutes that usually take months. Today, more than 18,000 companies use open source H2O in mission-critical use cases for finance, insurance, healthcare, retail, telco, sales, and marketing.

The software capabilities of H2O.ai combined with hardware infrastructure of Intel, that includes 2nd Generation Xeon Scalable processors, Optane Solid State Drives and Ethernet Network Adapters, can empower enterprises to optimize performance and accelerate deployment.

Enterprises that are looking for increasing productivity while increasing the business value of to enjoy the competitive advantages of AI innovation no longer have to wait thanks to hardware backed AutoML solutions.

comments

Read more here:
Deploying Machine Learning Has Never Been This Easy - Analytics India Magazine

Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. – DocWire…

This article was originally published here

Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts.

PLoS Med. 2020 Jun;17(6):e1003149

Authors: Atabaki-Pasdar N, Ohlsson M, Viuela A, Frau F, Pomares-Millan H, Haid M, Jones AG, Thomas EL, Koivula RW, Kurbasic A, Mutie PM, Fitipaldi H, Fernandez J, Dawed AY, Giordano GN, Forgie IM, McDonald TJ, Rutters F, Cederberg H, Chabanova E, Dale M, Masi F, Thomas CE, Allin KH, Hansen TH, Heggie A, Hong MG, Elders PJM, Kennedy G, Kokkola T, Pedersen HK, Mahajan A, McEvoy D, Pattou F, Raverdy V, Hussler RS, Sharma S, Thomsen HS, Vangipurapu J, Vestergaard H, t Hart LM, Adamski J, Musholt PB, Brage S, Brunak S, Dermitzakis E, Frost G, Hansen T, Laakso M, Pedersen O, Ridderstrle M, Ruetten H, Hattersley AT, Walker M, Beulens JWJ, Mari A, Schwenk JM, Gupta R, McCarthy MI, Pearson ER, Bell JD, Pavo I, Franks PW

AbstractBACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning.METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or 5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or 5%) rather than a continuous one.CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community.TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.

PMID: 32559194 [PubMed as supplied by publisher]

Read this article:
Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. - DocWire...

How machine learning could reduce police incidents of excessive force – MyNorthwest.com

Protesters and police in Seattle's Capitol Hill neighborhood. (Getty Images)

When incidents of police brutality occur, typically departments enact police reforms and fire bad cops, but machine learning could potentially predict when a police officer may go over the line.

Rayid Ghani is a professor at Carnegie Mellon and joined Seattles Morning News to discuss using machine learning in police reform. Hes working on tech that could predict not only which cops might not be suited to be cops, but which cops might be best for a particular call.

AI and technology and machine learning, and all these buzzwords, theyre not able to to fix racism or bad policing, they are a small but important tool that we can use to help, Ghani said. I was looking at the systems called early intervention systems that a lot of large police departments have. Theyre supposed to raise alerts, raise flags when a police officer is at risk of doing something that they shouldnt be doing, like excessive use of force.

What level of privacy can we expect online?

What we found when looking at data from several police departments is that these existing systems were mostly ineffective, he added. If theyve done three things in the last three months that raised the flag, well thats great. But at the same time, its not an early intervention. Its a late intervention.

So they built a system that works to potentially identify high risk officers before an incident happens, but how exactly do you predict how somebody is going to behave?

We build a predictive system that would identify high risk officers We took everything we know about a police officer from their HR data, from their dispatch history, from who they arrested , their internal affairs, the complaints that are coming against them, the investigations that have happened, Ghani said.

Can the medical system and patients afford coronavirus-related costs?

What we found were some of the obvious predictors were what you think is their historical behavior. But some of the other non-obvious ones were things like repeated dispatches to suicide attempts or repeated dispatches to domestic abuse cases, especially involving kids. Those types of dispatches put officers at high risk for the near future.

While this might suggest that officers who regularly dealt with traumatic dispatches might be the ones who are higher risk, the data doesnt explain why, it just identifies possibilities.

It doesnt necessarily allow us to figure out the why, it allows us to narrow down which officers are high risk, Ghani said. Lets say a call comes in to dispatch and the nearest officer is two minutes away, but is high risk of one of these types of incidents. The next nearest officer is maybe four minutes away and is not high risk. If this dispatch is not time critical for the two minutes extra it would take, could you dispatch the second officer?

So if an officer has been sent to a multiple child abuse cases in a row, it makes more sense to assign somebody else the next time.

Thats right, Ghani said. Thats what that were finding is they become high risk It looks like its a stress indicator or a trauma indicator, and they might need a cool-off period, they might need counseling.

But in this case, the useful thing to think about also is that they havent done anything yet, he added. This is preventative, this is proactive. And so the intervention is not punitive. You dont fire them. You give them the tools that they need.

Listen to Seattles Morning News weekday mornings from 5 9 a.m. on KIRO Radio, 97.3 FM. Subscribe to thepodcast here.

Excerpt from:
How machine learning could reduce police incidents of excessive force - MyNorthwest.com