Engineering Profs’ Robotics and Composite Materials Research Win $1M in Funding – UMass Lowell

04/07/2021 By Edwin L. Aguirre

The CAREER grant is the NSFs most prestigious award in support of early-career faculty who demonstrate strong potential to lead research breakthroughs in their organizations.

They are among the 36 scientists and engineers from 27 research institutions across the country selected by the Air Force for the recognition. Aside from UMass Lowell, the other awardees include researchers from Johns Hopkins University, Carnegie Mellon University, Stanford University, Virginia Tech, the University of Illinois at Urbana-Champaign and the University of California San Diego.

Legged Robot Locomotion

Using her CAREER grant, Gu will draw upon dynamic modeling, state estimation, feedback control and theory of hybrid systems to advance the control theory of legged robots in order to realize and prove stable, legged locomotion on dynamic rigid surfaces that is, surfaces that move but do not deform.

Yan Gus NSF-funded research will help keep legged robots stable and upright while walking on nonstationary surfaces. Shown here is NASAs R5 Valkyrie humanoid robot.

Empowering legged robots with such new functionality will allow them to negotiate complex, dynamic human environments, which are very challenging for robots equipped with wheels or tracks, Gu explains.

This will enable them to assist in critical, high-risk situations such as fighting fire aboard ships as well as cleaning and disinfecting public transportation vehicles to contain the spread of infectious diseases such as COVID-19, she says.

Faster than the Speed of Sound

Maiarus YIP project focuses on ceramic matrix composite (CMC) materials, which consist of reinforcing ceramic fibers embedded in a ceramic matrix. They are used for high-temperature, high-strength applications, such as components for gas turbines and heat shields for hypersonic aircraft, missiles, rockets and spacecraft.

Maiaru will use experimentally validated process modeling to understand the mechanisms for the formation of residual stress induced by pyrolysis-infiltration-pyrolysis processes. Pyrolysis is the degradation of the ceramic at high temperatures in the absence of oxygen.

My goal is to establish a correlation between processing conditions, microstructure and mechanical performance of the composite, which currently is not clearly shown, she says. This work strongly supports ongoing research efforts at the Air Force Research Laboratory and NASAs Langley Research Center.

According to Maiaru, process modeling for CMCs manufactured through the pyrolysis-infiltration-pyrolysis cycle is a relatively undeveloped field.

This project will help enhance the performance of high-temperature composites, optimize their manufacturing process and lead to the discovery of new materials that would establish U.S. leadership in hypersonic applications, she says.

It has great potential for advancing materials research for extreme environments and for overcoming the costly and time-consuming trial-and-error design that is being used today.

Maiaru is currently working on process modeling of advanced composites for structural applications under the sponsorship of the NSF, NASA and the Air Force Research Laboratory.

Read more:

Engineering Profs' Robotics and Composite Materials Research Win $1M in Funding - UMass Lowell

Related Posts

Comments are closed.