Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 11621184 (2020).
Article                        Google Scholar                
Loftus, D. J., Rask, J. C., McCrossin, C. G. & Tranfield, E. M. The chemical reactivity of lunar dust: from toxicity to astrobiology. Earth Moon Planets 107, 95105 (2010).
Article                        Google Scholar                
Pohlen, M., Carroll, D., Prisk, G. K. & Sawyer, A. J. Overview of lunar dust toxicity risk. NPJ Microgravity 8, 55 (2022).
Paul, A.-L. & Ferl, R. J. The biology of low atmospheric pressureimplications for exploration mission design and advanced life support. Am. Soc. Gravit. Space Biol. 19, 317 (2005).
Council, N. R. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (National Academies Press, 2011).
Goswami, N. et al. Maximizing information from space data resources: a case for expanding integration across research disciplines. Eur. J. Appl. Physiol. 113, 16451654 (2013).
Article                        Google Scholar                
Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401407 (2020).
Article                        Google Scholar                
Costes, S. V., Sanders, L. M. & Scott, R. T. Workshop on Artificial Intelligence & Modeling for Space Biology. Zenodo https://doi.org/10.5281/zenodo.7508535 (2023).
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255260 (2015).
Article    MathSciNet    MATH                        Google Scholar                
Topol, E. J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 4456 (2019).
Article                        Google Scholar                
Scott, R. T. et al. Biomonitoring and precision health in deep space supported by artificial intelligence. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00617-5 (2023).
National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Research Data and Information & Committee on Toward an Open Science Enterprise Open Science by Design: Realizing a Vision for 21st Century Research (National Academies Press, 2018).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Article                        Google Scholar                
Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and usability for open-access omics data systems. AMIA Annu. Symp. Proc. 2018, 232241 (2018).
                    Google Scholar                
Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).
Article                        Google Scholar                
Ronca, A. E., Souza, K. A. & Mains, R. C. (eds) Translational Cell and Animal Research in Space: 19652011 NASA Special Publication NASA/SP-2015-625 (NASA Ames Research Center, 2016).
Alwood, J. S. et al. From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 3, 5 (2017).
Schatten, H., Lewis, M. L. & Chakrabarti, A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut. 49, 399418 (2001).
Article                        Google Scholar                
Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFB and metabolic pathways. Cell. Mol. Immunol. 18, 14891502 (2021).
Article                        Google Scholar                
Ferl, R. J., Koh, J., Denison, F. & Paul, A.-L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 15, 3256 (2015).
Article                        Google Scholar                
Ou, X. et al. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutat. Res. 662, 4453 (2009).
Article                        Google Scholar                
Overbey, E. G. et al. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Sci. Rep. 9, 13304 (2019).
Article                        Google Scholar                
Clment, G. & Slenzka, K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space (Springer Science & Business Media, 2006).
Yeung, C. K. et al. Tissue chips in space-challenges and opportunities. Clin. Transl. Sci. 13, 810 (2020).
Article                        Google Scholar                
Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345361 (2021).
Article                        Google Scholar                
Globus, R. K. & Morey-Holton, E. Hindlimb unloading: rodent analog for microgravity. J. Appl. Physiol. 120, 11961206 (2016).
Article                        Google Scholar                
Simonsen, L. C., Slaba, T. C., Guida, P. & Rusek, A. NASAs first ground-based Galactic cosmic ray simulator: enabling a new era in space radiobiology research. PLoS Biol. 18, e3000669 (2020).
Article                        Google Scholar                
Buckey, J. C. Jr & Homick, J. L. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission. NASA Technical Reports Server (NASA, 2003).
Diallo, O. N. et al. Impact of the International Space Station Research Results. NASA Technical Reports Server (NASA, 2019).
Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci. 243, 115119 (2016).
Article                        Google Scholar                
Massaro Tieze, S., Liddell, L. C., Santa Maria, S. R. & Bhattacharya, S. BioSentinel: a biological CubeSat for deep space exploration. Astrobiology https://doi.org/10.1089/ast.2019.2068 (2020).
Ricco, A. J., Maria, S. R. S., Hanel, R. P. & Bhattacharya, S. BioSentinel: a 6U nanosatellite for deep-space biological science. IEEE Aerospace Electron. Syst. Mag. 35, 618 (2020).
Article                        Google Scholar                
Chen, Y. et al. Automated cells-to-peptides sample preparation workflow for high-throughput, quantitative proteomic assays of microbes. J. Proteome Res. 18, 37523761 (2019).
Article                        Google Scholar                
Zampieri, M., Sekar, K., Zamboni, N. & Sauer, U. Frontiers of high-throughput metabolomics. Curr. Opin. Chem. Biol. 36, 1523 (2017).
Article                        Google Scholar                
Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015).
Article                        Google Scholar                
Tomczak, K., Czerwiska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68A77 (2015).
                    Google Scholar                
Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580585 (2013).
Article                        Google Scholar                
Atta, L. & Fan, J. Computational challenges and opportunities in spatially resolved transcriptomic data analysis. Nat. Commun. 12, 5283 (2021).
Article                        Google Scholar                
Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 914 (2021).
Article                        Google Scholar                
Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518524 (2016).
Article                        Google Scholar                
Mardis, E. R. DNA sequencing technologies: 20062016. Nat. Protoc. 12, 213218 (2017).
Article                        Google Scholar                
Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257272 (2019).
Article                        Google Scholar                
Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 16471660.e19 (2019).
Article                        Google Scholar                
Giacomello, S. et al. Spatially resolved transcriptome profiling in model plant species. Nat Plants 3, 17061 (2017).
Article                        Google Scholar                
Mao, X. W. et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci. Rep. 9, 8215 (2019).
Article                        Google Scholar                
Jonscher, K. R. et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS ONE 11, e0152877 (2016).
Article                        Google Scholar                
Beheshti, A. et al. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci. Rep. 9, 19195 (2019).
Article                        Google Scholar                
Malkani, S. et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 33, 108448 (2020).
Article                        Google Scholar                
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 11851201.e20 (2020).
Article                        Google Scholar                
Jiang, P., Green, S. J., Chlipala, G. E., Turek, F. W. & Vitaterna, M. H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7, 113 (2019).
Article                        Google Scholar                
Beisel, N. S., Noble, J., Barbazuk, W. B., Paul, A.-L. & Ferl, R. J. Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. NPJ Microgravity 5, 9 (2019).
Polo, S.-H. L. et al. RNAseq analysis of rodent spaceflight experiments is confounded by sample collection techniques. iScience 23, 101733 (2020).
Article                        Google Scholar                
Choi, S., Ray, H. E., Lai, S.-H., Alwood, J. S. & Globus, R. K. Preservation of multiple mammalian tissues to maximize science return from ground based and spaceflight experiments. PLoS ONE 11, e0167391 (2016).
Article                        Google Scholar                
Krishnamurthy, A., Ferl, R. J. & Paul, A.-L. Comparing RNA-seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Appl. Plant Sci. 6, e01197 (2018).
Article                        Google Scholar                
Vrana, J. et al. Aquarium: open-source laboratory software for design, execution and data management. Synth. Biol. 6, ysab006 (2021).
Article                        Google Scholar                
Miles, B. & Lee, P. L. Achieving reproducibility and closed-loop automation in biological experimentation with an IoT-enabled lab of the future. SLAS Technol. 23, 432439 (2018).
Article                        Google Scholar                
Visit link:
Biological research and self-driving labs in deep space supported ... - Nature.com
Read More..