Yi, Y., Zhu, D., Guo, S., Zhang, Z. & Shi, C. A review on        the deterioration and approaches to enhance the durability        of concrete in the marine environment. Cement Concr.        Compos. 113, 103695 (2020).      
        Article        CAS         Google Scholar      
        Ham, Y., Han, K. K., Lin, J. J. & Golparvar-Fard, M. Visual        monitoring of civil infrastructure systems via        camera-equipped unmanned aerial vehicles (UAVs): A review        of related works. Vis. Eng. 4(1), 18 (2016).      
        Article                Google Scholar      
        Sharma, K. V. et al. Prognostic modeling of        polydisperse SiO2/Aqueous glycerol nanofluids        thermophysical profile using an explainable artificial        intelligence (XAI) approach. Eng. Appl. Artif.        Intell. 126, 106967 (2023).      
        Article                Google Scholar      
        Kanti, P. K. et al. Thermophysical profile of        graphene oxide and MXene hybrid nanofluids for sustainable        energy applications: Model prediction with a Bayesian        optimized neural network with K-cross fold validation.        FlatChem 39, 100501 (2023).      
        Article        CAS         Google Scholar      
        Kanti, P. et al. Properties of water-based fly        ash-copper hybrid nanofluid for solar energy applications:        Application of RBF model. Sol. Energy Mater. Sol.        Cells 234, 111423 (2022).      
        Article        CAS         Google Scholar      
        Kanti, P. K. et al. The stability and thermophysical        properties of Al2O3-graphene oxide hybrid nanofluids for        solar energy applications: application of robust        autoregressive modern machine learning technique. Sol.        Energy Mater. Sol. Cells 253, 112207 (2023).      
        Article        CAS         Google Scholar      
        Hsieh, Y. A. & Tsai, Y. J. Machine learning for crack        detection: Review and model performance comparison. J.        Comput. Civ. Eng. 34(5), 04020038 (2020).      
        Article                Google Scholar      
        Munawar, H. S., Hammad, A. W. A., Haddad, A., Soares, C. A.        P. & Waller, S. T. Image-based crack detection methods: A        review. Infrastructures 6, 115. https://doi.org/10.3390/infrastructures6080115        (2021).      
        Article                Google Scholar      
        Dorafshan, S., Thomas, R. J. & Maguire, M. Sdnet 2018: An        annotated image dataset for non-contact concrete crack        detection using deep convolutional neural networks. Data        Brief 21, 16641668 (2018).      
        Article        PubMed        PubMed        Central         Google Scholar      
        C aglar, F., O zgenel, R.: Concrete crack        images for classification. Mendeley Data 2 (2019)      
        Xu, H. et al. Automatic bridge crack detection using        a convolutional neural network. Appl. Sci.        9(14), 2867 (2019).      
        Article         Google Scholar      
        Harinath Reddy, C., Mini, K., Radhika, N.: Structural        health monitor- ingan integrated approach for vibration        analysis with wireless sensors to steel structure using        image processing. In: International Conference on ISMAC in        Computational Vision and Bio-Engineering, pp. 15951610        (2018). Springer      
        Pauly, L., Hogg, D., Fuentes, R., Peel, H.: Deeper networks        for pavement crack detection. In: Proceedings of the 34th        ISARC, pp. 479485 (2017). IAARC      
        Lins, R. G. & Givigi, S. N. Automatic crack detection and        measurement based on image analysis. IEEE Trans.        Instrum. Meas. 65(3), 583590. https://doi.org/10.1109/TIM.2015.2509278        (2016).      
        Article         Google Scholar      
        Shahrokhinasab, E., Hosseinzadeh, N., Monirabbasi, A. &        Torkaman, S. Performance of image-based crack detection        systems in concrete structures. J. Soft Comput. Civ.        Eng. 4(1), 127139 (2020).      
                Google Scholar      
        Munawar, H. S., Hammad, A. W., Haddad, A., Soares, C. A. P.        & Waller, S. T. Image-based crack detection methods: A        review. Infrastructures 6(8), 115 (2021).      
        Article                Google Scholar      
        Zou, Q., Cao, Y., Li, Q., Mao, Q. & Wang, S. Cracktree:        Automatic crack detection from pavement images. Pattern        Recognit. Lett. 33(3), 227238 (2012).      
        Article                Google Scholar      
        Salman, M., Mathavan, S., Kamal, K. & Rahman, M. Pavement        crack detection using the Gabor filter. In 16th        International IEEE Conference on Intelligent Transportation        Systems (ITSC 2013) (eds Salman, M. et al.)        20392044 (IEEE, 2013).      
        Chapter                Google Scholar      
        Niu, B., Wu, H. & Meng, Y. Application of cem algorithm in        the field of tunnel crack identification. In 2020 IEEE        5th International Conference on Image, Vision and Computing        (ICIVC) (eds Niu, B. et al.) 232236 (IEEE,        2020).      
        Chapter                Google Scholar      
        Chhabra, G. et al. Human emotions recognition,        analysis and transformation by the bioenergy field in smart        grid using image processing. Electronics 11,        4059. https://doi.org/10.3390/electronics11234059        (2022).      
        Article                Google Scholar      
        Baltazart, V., Nicolle, P. & Yang, L. Ongoing tests and        improvements of the mps algorithm for the automatic crack        detection within grey level pavement images. In 2017        25th European Signal Processing Conference (EUSIPCO)        (eds Baltazart, V. et al.) 20162020 (IEEE, 2017).      
        Chapter                Google Scholar      
        Jo, J. & Jadidi, Z. A high precision crack classification        system using multi-layered image processing and deep belief        learning. Struct. Infrastruct. Eng. 16(2),        297305 (2020).      
        Article                Google Scholar      
        Landstrom, A. & Thurley, M. J. Morphology-based crack        detection for steel slabs. IEEE J. Sel. Top. Signal        Process. 6(7), 866875 (2012).      
        Article                Google Scholar      
        Prasanna, P. et al. Automated crack detection on        concrete bridges. IEEE Trans. Autom. Sci. Eng.        13(2), 591599 (2014).      
        Article                Google Scholar      
        Lin, M., Zhou, R., Yan, Q. & Xu, X. Automatic pavement        crack detection using hmrf-em algorithm. In 2019        International Conference on Computer, Information and        Telecommunication Systems (CITS) (eds Lin, M. et        al.) 15 (IEEE, 2019).      
                Google Scholar      
        Pratico, F. G., Fedele, R., Naumov, V. & Sauer, T.        Detection and monitoring of bottom-up cracks in road        pavement using a machine-learning approach.        Algorithms 13(4), 81 (2020).      
        Article         Google Scholar      
        Zhang, F. et al. A new identification method for        surface cracks from uav images based on machine learning in        coal mining areas. Remote Sens. 12(10), 1571        (2020).      
        Article         Google Scholar      
        Zhang, L. et al. Machine learning-based real-time        visible fatigue crack growth detection. Digit. Commun.        Netw. 7(4), 551558 (2021).      
        Article                Google Scholar      
        Dharneeshkar, J. et al. Deep learning based        detection of potholes in indian roads using yolo. In        2020 International Conference on Inventive Computation        Technologies (ICICT) (eds Dharneeshkar, J. et        al.) 381385 (IEEE, 2020).      
                Google Scholar      
        Li, H., Zong, J., Nie, J., Wu, Z. & Han, H. Pavement crack        detection algorithm based on densely connected and deeply        supervised network. IEEE Access 9,        1183511842 (2021).      
        Article                Google Scholar      
        Zhang, L., Yang, F., Zhang, Y. D. & Zhu, Y. J. Road crack        detection using deep convolutional neural network. In        2016 IEEE International Conference on Image Processing        (ICIP) (eds Zhang, L. et al.) 37083712 (IEEE,        2016).      
        Chapter                Google Scholar      
        Meng, X. Concrete crack detection algorithm based on deep        residual neural networks. Sci. Program. 2021,        17 (2021).      
        CAS         Google Scholar      
        Su, C. & Wang, W. Concrete cracks detection using        convolutional neural- network based on transfer learning.        Math. Problems Eng. 2020, 110 (2020).      
                Google Scholar      
        Ye, X.-W., Jin, T. & Chen, P.-Y. Structural crack detection        using deep learningbased fully convolutional networks.        Adv. Struct. Eng. 22(16), 34123419 (2019).      
        Article         Google Scholar      
        Feng, C. et al. Structural damage detection using        deep convolutional neural network and transfer learning.        KSCE J. Civ. Eng. 23(10), 44934502 (2019).      
        Article                Google Scholar      
        Kim, C. N., Kawamura, K., Nakamura, H. & Tarighat, A.        Automatic crack detection for concrete infrastructures        using image processing and deep learning. In IOP        Conference Series: Materials Science and Engineering        Vol. 829 (eds Kim, C. N. et al.) 012027 (IOP        Publishing, 2020).      
                Google Scholar      
        Cao, M.-T., Tran, Q.-V., Nguyen, N.-M. & Chang, K.-T.        Survey on performance of deep learning models for detecting        road damages using multiple dashcam image resources.        Adv. Eng. Inform. 46, 101182 (2020).      
        Article                Google Scholar      
        Nguyen, N. H. T., Perry, S., Bone, D., Le, H. T. & Nguyen,        T. T. Two-stage convolutional neural network for road crack        detection and segmentation. Expert Syst. Appl.        186, 115718 (2021).      
        Article                Google Scholar      
        Park, S. E., Eem, S.-H. & Jeon, H. Concrete crack detection        and quantifica- tion using deep learning and structured        light. Constr. Build. Mater. 252, 119096        (2020).      
        Article                Google Scholar      
        Huyan, J., Li, W., Tighe, S., Xu, Z. & Zhai, J. Cracku-net:        A novel deep convolutional neural network for pixelwise        pavement crack detection. Struct. Control Health        Monit. 27(8), 2551 (2020).      
        Article         Google Scholar      
        Kim, B., Yuvaraj, N., Sri Preethaa, K. & Arun Pandian, R.        Surface crack detection using deep learning with shallow        cnn architecture for enhanced computation. Neural        Computing Appl. 33(15), 92899305 (2021).      
        Article                Google Scholar      
        GI, K.F.: A hierarchical neural network capable of visual        pattern recognition. Neural Network 1 (1989).      
        Russakovsky, O. et al. Imagenet large scale visual        recognition challenge. Int. J. Comput. Vis.        115(3), 211252 (2015).      
        Article        MathSciNet                Google Scholar      
        LeCun, Y. et al. Handwritten digit recognition with        a back-propagation network. Adv. Neural Inf. Process.        Syst. 2, 396404 (1989).      
                Google Scholar      
        Arel, I., Rose, D. C. & Karnowski, T. P. Deep machine        learning-a new frontier in artificial intelligence research        [research frontier]. IEEE comput. Intel. Mag.        5(4), 1318 (2010).      
        Article         Google Scholar      
        Simonyan, K., Zisserman, A.: Very deep convolutional        networks for large- scale image recognition. arXiv preprint        arXiv:1409.1556        (2014).      
        Chollet, F.: Xception: Deep learning with depthwise        separable convolutions. In: Proceedings of the IEEE        Conference on Computer Vision and Pattern Recognition, pp.        12511258 (2017).      
        He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning        for image recognition. In: Proceedings of the IEEE        Conference on Computer Vision and Pattern Recognition, pp.        770778 (2016).      
        Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna,        Z.: Rethinking the inception architecture for computer        vision. In: Proceedings of the IEEE Conference on Computer        Vision and Pattern Recognition, pp. 28182826 (2016).      
        Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.:        Inception-v4, inception-resnet and the impact of residual        connections on learning. In: Thirty-first AAAI Conference        on Artificial Intelligence (2017).      
        Andrew, G. et al. Efficient convolutional neural        networks for mobile vision applications. Mobilenets.        Available: http://arxiv.org/abs/1704.04861        (2017).      
        Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,        L.-C.: Mobilenetv2: Inverted residuals and linear        bottlenecks. In: Proceedings of the IEEE Conference on        Computer Vision and Pattern Recognition, pp. 45104520        (2018).      
        Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.:        Densely connected convolutional networks. In: Proceedings        of the IEEE Conference on Computer Vision and Pattern        Recognition, pp. 47004708 (2017).      
        Tan, M. & Le, Q. Efficient Net: Rethinking model scaling        for convolutional neural networks. In International        Conference on Machine Learning (eds Tan, M. & Le, Q.)        61056114 (PMLR, 2019).      
                Google Scholar      
        Sikha, O. & Bharath, B. Vgg16-random fourier hybrid model        for masked face recognition. Soft Comput. 26,        116 (2022).      
        Article                Google Scholar      
        Srihari, K. & Sikha, O. Partially supervised image        captioning model for urban road views. In Intelligent        Data Communication Technologies and Internet of Things        (eds Srihari, K. & Sikha, O.) 5973 (Springer, 2022).      
        Chapter                Google Scholar      
Originally posted here:
Transfer learned deep feature based crack detection using support vector machine: a comparative study | Scientific ... - Nature.com
Read More..