WEST LAFAYETTE, Ind. New experimental evidence of a collective behavior of electrons to form "quasiparticles" called "anyons" has been reported by a team of scientists at Purdue University.
Anyons have characteristics not seen in other subatomic particles, including exhibiting fractional charge and fractional statistics that maintain a "memory" of their interactions with other quasiparticles by inducing quantum mechanical phase changes.
Postdoctoral research associate James Nakamura, with assistance from research group members Shuang Liang and Geoffrey Gardner, made the discovery while working in the laboratory of professor Michael Manfra. Manfra is a Distinguished Professor of Physics and Astronomy, Purdue's Bill and Dee O'Brien Chair Professor of Physics and Astronomy, professor of electrical and computer engineering, and professor of materials engineering. Although this work might eventually turn out to be relevant to the development of a quantum computer, for now, Manfra said, it is to be considered an important step in understanding the physics of quasiparticles.
A research paper on the discovery was published in this week's Nature Physics.
Nobel Prize-winning theoretical physicist Frank Wilczek, professor of physics at MIT, gave these quasiparticles the tongue-in-cheek name "anyon" due to their strange behavior because unlike other types of particles, they can adopt any quantum phase when their positions are exchanged.
Before the growing evidence of anyons in 2020, physicists had categorized particles in the known world into two groups: fermions and bosons. Electrons are an example of fermions, and photons, which make up light and radio waves, are bosons. One characteristic difference between fermions and bosons is how the particles act when they are looped, or braided, around each other. Fermions respond in one straightforward way, and bosons in another expected and straightforward way.
Anyons respond as if they have a fractional charge, and even more interestingly, create a nontrivial phase change as they braid around one another. This can give the anyons a type of "memory" of their interaction.
"Anyons only exist as collective excitations of electrons under special circumstances," Manfra said. But they do have these demonstrably cool properties including fractional charge and fractional statistics. It is funny, because you think, 'How can they have less charge than the elementary charge of an electron?' But they do."
Manfra said that when bosons or fermions are exchanged, they generate a phase factor of either plus one or minus one, respectively.
"In the case of our anyons the phase generated by braiding was 2/3," he said. That's different than what's been seen in nature before."
Anyons display this behavior only as collective crowds of electrons, where many electrons behave as one under very extreme and specific conditions, so they are not thought to be found isolated in nature, Nakamura said.
"Normally in the world of physics, we think about fundamental particles, such as protons and electrons, and all of the things that make up the periodic table," he said. "But we study the existence of quasiparticles, which emerge from a sea of electrons that are placed in certain extreme conditions."
Because this behavior depends on the number of times the particles are braided, or looped, around each other, they are more robust in their properties than other quantum particles. This characteristic is said to be topologicalbecause it depends on the geometry of the system and may eventually lead to much more sophisticated anyon structures that could be used to build stable, topological quantum computers.
The team was able to demonstrate this behavior by routing the electrons through a specific maze-like etched nanostructure made of gallium arsenide and aluminum gallium arsenide. This device, called an interferometer, confined the electrons to move in a two-dimensional path. The device was cooled to within one-hundredth of a degree from absolute zero (10 millikelvin), and subjected to a powerful 9-Tesla magnetic field. The electrical resistance of the interferometer generated an interference pattern which the researchers called a pyjama plot. Jumps in the interference pattern were the signature of the presence of anyons.
"It is definitely one of the more complex and complicated things to be done in experimental physics," Chetan Nayak, theoretical physicist at the University of California, Santa Barbara told Science News.
Nakamura said the facilities at Purdue created the environment for this discovery to happen.
"We have the technology to grow the gallium arsenide semiconductor that's needed to realize our electron system. We have the nanofabrication facilities in the Birck Nanotechnology Center to make the interferometer, the device we used in our experiments. In the physics department, we have the ability to measure ultra-low temperatures and to create strong magnetic fields." he said. "So, we have all of the necessary components that allowed us to make this discovery all here at Purdue. That's a great thing about doing research here and why we've been able to make this progress."
Manfra said the next step in the quasiparticle frontier will involve building more complicated interferometers.
"In the new interferometers we will have the ability to control the location and number of quasiparticles in the chamber," he said. "Then we will be able to change the number of quasiparticles inside the interferometer on demand and change the interference pattern as we choose.
This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-SC0020138.
About Purdue University
Purdue University is a top public research institution developing practical solutions to todays toughest challenges. Ranked the No. 6 Most Innovative University in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap athttps://purdue.edu/.
Writer, Media contact: Steve Tally, steve@purdue.edu, @sciencewriter
Sources: Michael Manfra, mmanfra@purdue.edu
James Nakamura, jnakamur@purdue.edu
Journalists visiting campus: Journalists should followProtect Purdue protocolsandthe followingguidelines:
ABSTRACT
Direct observation of anyonic braiding statistics
Nakamura,1,2 S. Liang,1,2 G.C. Gardner,2,3 and M. J. Manfra1,2,4,3,5,
1Department of Physics and Astronomy, Purdue University 2Birck Nanotechnology Center, Purdue University 3Microsoft Quantum Purdue, Purdue University 4School of Electrical and Computer Engineering, Purdue University 5School of Materials Engineering, Purdue University
DOI: 10.1038/s41567-020-1019-1
Anyons are quasiparticles that, unlike fermions and bosons, show fractional statistics when two of them are exchanged. Here, we report experimental observation of anyonic braiding statistics for the = 1/3 fractional quantum Hall state using a device that is equivalent to a Fabry-Perot interferometer. Strong Aharonov-Bohm interference of the edge mode is punctuated by discrete phase slips that indicate an anyonic phase of anyon = 2/3. Our results are consistent with a recent theory for an interferometer operated in a regime in which device charging energy is small compared to the energy of formation of charged quasiparticles, indicating that we have observed anyonic braiding.
More:
New evidence that the quantum world is even stranger than we thought - Purdue News Service
- Quantum computing research helps IBM win top spot in patent race - CNET - January 14th, 2021
- Error Protected Quantum Bits Entangled: A Milestone in the Development of Fault-Tolerant Quantum Computers - SciTechDaily - January 14th, 2021
- You can find a $180K solar-powered car, qubit controls, and breathing tips at the NL Tech Pavilion at CES 2021 - TechRepublic - January 14th, 2021
- NSA Cites DoD Crypto Work in First-Ever Cybersecurity Year-End Report - MeriTalk - January 14th, 2021
- 'Magic' angle graphene and the creation of unexpected topological quantum states - Princeton University - December 15th, 2020
- Bringing Your Mainframe Into the Cloud Age - CMSWire - December 15th, 2020
- ASC20-21 Student Supercomputer Challenge Kickoff: Quantum Computing Simulations, AI Language Exam and Pulsar Searching with FAST - Business Wire - November 26th, 2020
- Virtual ICM Seminar with Hiroaki Kitano, 'Nobel Turing Challenge-Creating the Engine of Scientific Discovery' to Be Held Nov 26 - HPCwire - November 26th, 2020
- The Trillion-Transistor Chip That Just Left a Supercomputer in the Dust - Singularity Hub - November 26th, 2020
- Imperfections Lower the Simulation Cost of Quantum Computers - Physics - November 24th, 2020
- Is the blockchain vulnerable to hacking by quantum computers? - Moneyweb.co.za - November 24th, 2020
- Can a Computer Devise a Theory of Everything? - The New York Times - November 24th, 2020
- Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications - SciTechDaily - November 24th, 2020
- Inside the Competition That Will Save Bitcoin From Quantum Computers - Decrypt - November 22nd, 2020
- Foreign policy expert: China is 'outstripping us' in technologies of the future - Brainerd Dispatch - November 22nd, 2020
- Cracking the secrets of an emerging branch of physics - MIT News - November 22nd, 2020
- #SpaceWatchGL Opinion: Quantum Technology and Impact of the Global Space Security - SpaceWatch.Global - November 22nd, 2020
- A Scoville Heat Scale For Measuring The Progress Of Emerging Technologies In 2021 - Forbes - November 22nd, 2020
- Democracies must team up to take on China in the technosphere - The Economist - November 22nd, 2020
- Honeywell fires up the H1, its second-generation quantum computer - CNET - November 2nd, 2020
- Quantum computers could soon reveal all of our secrets. The race is on to stop that happening - ZDNet - November 2nd, 2020
- Quantum Computing Expert Warns Governments May Be First to Crack Algorithms Keeping Bitcoin and the Internet Secure - The Daily Hodl - November 2nd, 2020
- Australia's Archer and its plan for quantum world domination - ZDNet - November 2nd, 2020
- Quantum Computing Is Bigger Than Donald Trump - WIRED - November 2nd, 2020
- Will Quantum Mechanics Produce the True Thinking Computer? - Walter Bradley Center for Natural and Artificial Intelligence - November 2nd, 2020
- Strategic Partnership will aid smooth work in the event of regional crisis: Australia High Commissioner - The Hindu - November 2nd, 2020
- Valuation of quantum computer maker D-Wave slashed by more than half after company struggles to raise financing - The Globe and Mail - October 27th, 2020
- 60-year-old limit to lasers overturned by quantum researchers - Griffith News - October 27th, 2020
- A Measured Approach to Regulating Fast-Changing Tech - Harvard Business Review - October 27th, 2020
- The Importance of Funding Quantum Physics, Even in a Pandemic - Inside Philanthropy - October 23rd, 2020
- Material found in paint may hold the key to a technological revolution - Advanced Science News - October 23rd, 2020
- What is Quantum Computing, and How does it Help Us? - Analytics Insight - October 13th, 2020
- QCE20: Here's what you can expect from Intel's new quantum computing research this week - Neowin - October 13th, 2020
- Canadian quantum computing firms partner to spread the technology - IT World Canada - October 13th, 2020
- Ten-year Forecasts for Quantum Networking Opportunities and Deployments Over the Coming Decade - WFMZ Allentown - October 13th, 2020
- Berkeley Lab Technologies Honored With 7 R&D 100 Awards - Lawrence Berkeley National Laboratory - October 5th, 2020
- IBM Partners With HBCUs to Diversify Quantum Computing Workforce - Diverse: Issues in Higher Education - September 25th, 2020
- IBM, Alphabet and well-funded startups in the race for quantum supremacy - IT Brief Australia - September 25th, 2020
- How This Bangalore Based Startup Is Driving Innovation With Quantum Technology-Based Products - Analytics India Magazine - September 25th, 2020
- New faculty add to Yale's strength in applied mathematics - Yale News - September 25th, 2020
- NU receives $115 million federal grant to research and develop beyond state-of-the-art quantum computer - Daily Northwestern - September 24th, 2020
- IBM Just Committed to Having a Functioning 1,000 Qubit Quantum Computer by 2023 - ScienceAlert - September 24th, 2020
- IBM plans to build a 1121 qubit system. What does this technology mean? - The Hindu - September 24th, 2020
- Extending the life of the qubit | Temple Now - Temple University News - September 24th, 2020
- OSTP, NSF, DoE, and IBM make major push to strengthen research in AI and quantum - BlackEngineer.com - September 24th, 2020
- Heres why quantum computing is a cat among the pigeons - BusinessLine - September 12th, 2020
- The Hyperion-insideHPC Interviews: ORNL Distinguished Scientist Travis Humble on Coupling Classical and Quantum Computing - insideHPC - September 12th, 2020
- Oxford Instruments Partners With The 10 Million Consortium, To Launch The First Commercial Quantum Computer In UK - AZoNano - September 10th, 2020
- Combinations of new technologies will upend finance - The Australian Financial Review - September 10th, 2020
- Quantum Computing Market Analysis by Growth, segmentation, performance, Competitive Strategies and Forecast to 2026 - Galus Australis - September 10th, 2020
- The Quantum Dream: Are We There Yet? - Toolbox - September 7th, 2020
- 17 extremely useful productivity tips from this years 40 Under 40 - Yahoo Finance UK - September 7th, 2020
- How Amazon Quietly Powers The Internet - Forbes - September 7th, 2020
- Study Expands Types of Physics, Engineering Problems That Can Be Solved by Quantum Computers - HPCwire - September 4th, 2020
- How Andersen Cheng plans to defend against the quantum computer - The Independent - September 4th, 2020
- Quantum computer to be hosted in Abingdon - ClickLancashire - September 4th, 2020
- Assistant director of NSFs Computer and Information Science and Engineering to give virtual talk Sept. 11 - Vanderbilt University News - September 4th, 2020
- Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing,... - August 29th, 2020
- I confess, I'm scared of the next generation of supercomputers - TechRadar - August 29th, 2020
- Q-NEXT collaboration awarded National Quantum Initiative funding - University of Wisconsin-Madison - August 29th, 2020
- UArizona Scientists to Build What Einstein Wrote off as Science Fiction - UANews - August 29th, 2020
- Quantum leap? US plans for unhackable internet may not fructify within a decade, but India is far behind - The Financial Express - August 4th, 2020
- Google distinguished scientist Hartmut Neven is one of Fast Company's - Fast Company - August 4th, 2020
- Quantum physicists say time travelers don't have to worry about the butterfly effect - The Next Web - August 2nd, 2020
- Week in review: BootHole, RCEs in industrial VPNs, the cybersecurity profession crisis - Help Net Security - August 2nd, 2020
- New UC-led institute awarded $25M to explore potential of quantum computing and train a future workforce - University of California - July 31st, 2020
- The future of encryption: Getting ready for the quantum computer attack - TechRepublic - July 31st, 2020
- IBM and University of Tokyo team up for Quantum Innovation Initiative Consortium - SmartPlanet.com - July 31st, 2020
- 'Butterfly effect' is wrong and reality can 'heal itself', quantum scientists find in time travel experiment - The Independent - July 31st, 2020
- Research: the butterfly effect does not exist in the quantum model - FREE NEWS - July 31st, 2020
- Solving problems by working together: Could quantum computing hold the key to Covid-19? - ITProPortal - July 2nd, 2020
- Spain Introduces the World's First Quantum Phase Battery - News - All About Circuits - July 2nd, 2020
- Professor tackles one more mystery about quantum mechanics and times flow - GeekWire - July 2nd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through June 27) - Singularity Hub - June 29th, 2020
- Kudos: Read about faculty, staff and student awards, appointments and achievements - Vanderbilt University News - June 29th, 2020
- This Is the First Universal Language for Quantum Computers - Popular Mechanics - June 21st, 2020
- Universal Quantum raises $4.5 million to build a large-scale quantum computer - VentureBeat - June 17th, 2020
- Ethereum (ETH) Might Not have Quantum Resistance on its Roadmap, the QRL Team Reveals - Crowdfund Insider - June 17th, 2020
- Craig Knoblock Named Michael Keston Executive Director of the USC Information Sciences Institute - USC Viterbi School of Engineering - June 17th, 2020
- European quantum computing startup takes its funding to 32M with fresh raise - TechCrunch - June 11th, 2020
Recent Comments