Sept. 1, 2020 A well-known quantum algorithm that is useful in studying and solving problems in quantum physics can be applied to problems in classical physics, according to a new study in the journal Physical Review Afrom University of WisconsinMadison assistant professor of physicsJeff Parker.

Quantum algorithms a set of calculations that are run on a quantum computer as opposed to a classical computer used for solving problems in physics have mainly focused on questions in quantum physics. The new applications include a range of problems common to physics and engineering, and expands on the types of questions that can be asked in those fields.

The reason we like quantum computers is that we think there are quantum algorithms that can solve certain kinds of problems very efficiently in ways that classical computers cannot, Parker says. This paper presents a new idea for a type of problem that has not been addressed directly in the literature before, but it can be solved efficiently using these same quantum computer types of algorithms.

The type of problem Parker was investigating is known as generalized eigenvalue problems, which broadly describe trying to find the fundamental frequencies or modes of a system. Solving them is crucial to understanding common physics and engineering questions, such as the stability of a bridges design or, more in line with Parkers research interests, the stability and efficiency of nuclear fusion reactors.

As the system being studied becomes more and more complex more components moving throughout three-dimensional space so does the numerical matrix that describes the problem. A simple eigenvalue problem can be solved with a pencil and paper, but researchers have developed computer algorithms to tackle increasingly complex ones. With the supercomputers available today, more and more difficult physics problems are finding solutions.

If you want to solve a three-dimensional problem, it can be very complex, with a very complicated geometry, Parker says. You can do a lot on todays supercomputers, but there tends to be a limit. Quantum algorithms may be able to break that limit.

The specific quantum algorithm that Parker studied in this paper, known as quantum phase estimation, had been previously applied to so-called standard eigenvalue problems. However, no one had shown that they could be applied to the generalized eigenvalue problems that are also common in physics. Generalized eigenvalue problems introduce a second matrix that ups the mathematical complexity.

Parker took the quantum algorithm and extended it to generalized eigenvalue problems. He then looked to see what types of matrices could be used in this problem. If the matrix is sparse meaning, if most of the numerical components that make it up are zero it means this problem could be solved efficiently on a quantum computer.

What I showed is that there are certain types of generalized eigenvalue problems that do lead to a sparse matrix and therefore could be efficiently solved on a quantum computer, Parker says. This type includes the very natural problems that often occur in physics and engineering, so this study provides motivation for applying these quantum algorithms more to generalized eigenvalue problems, because it hasnt been a big focus so far.

Parker emphasizes that quantum computers are in their infancy, and these classical physics problems are still best approached through classical computer algorithms.

This study provides a step in showing that the application of a quantum algorithm to classical physics problems can be useful in the future, and the main advance here is it shows very clearly another type of problem to which quantum algorithms can be applied, Parker says.

The study was completed in collaboration with Ilon Joseph at Lawrence Livermore National Laboratory. Funding support was provided by the U.S. Department of Energy to Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and U.S. DOE Office of Fusion Energy Sciences Quantum Leap for Fusion Energy Sciences (FWP SCW1680).

For additional images, visit https://www.physics.wisc.edu/2020/08/25/new-study-expands-types-of-physics-engineering-problems-that-can-be-solved-by-quantum-computers/

Source: University of WisconsinMadison

View original post here:

Study Expands Types of Physics, Engineering Problems That Can Be Solved by Quantum Computers - HPCwire

- Valuation of quantum computer maker D-Wave slashed by more than half after company struggles to raise financing - The Globe and Mail - October 27th, 2020
- 60-year-old limit to lasers overturned by quantum researchers - Griffith News - October 27th, 2020
- A Measured Approach to Regulating Fast-Changing Tech - Harvard Business Review - October 27th, 2020
- The Importance of Funding Quantum Physics, Even in a Pandemic - Inside Philanthropy - October 23rd, 2020
- Material found in paint may hold the key to a technological revolution - Advanced Science News - October 23rd, 2020
- What is Quantum Computing, and How does it Help Us? - Analytics Insight - October 13th, 2020
- QCE20: Here's what you can expect from Intel's new quantum computing research this week - Neowin - October 13th, 2020
- Canadian quantum computing firms partner to spread the technology - IT World Canada - October 13th, 2020
- Ten-year Forecasts for Quantum Networking Opportunities and Deployments Over the Coming Decade - WFMZ Allentown - October 13th, 2020
- Berkeley Lab Technologies Honored With 7 R&D 100 Awards - Lawrence Berkeley National Laboratory - October 5th, 2020
- IBM Partners With HBCUs to Diversify Quantum Computing Workforce - Diverse: Issues in Higher Education - September 25th, 2020
- IBM, Alphabet and well-funded startups in the race for quantum supremacy - IT Brief Australia - September 25th, 2020
- How This Bangalore Based Startup Is Driving Innovation With Quantum Technology-Based Products - Analytics India Magazine - September 25th, 2020
- New faculty add to Yale's strength in applied mathematics - Yale News - September 25th, 2020
- NU receives $115 million federal grant to research and develop beyond state-of-the-art quantum computer - Daily Northwestern - September 24th, 2020
- IBM Just Committed to Having a Functioning 1,000 Qubit Quantum Computer by 2023 - ScienceAlert - September 24th, 2020
- IBM plans to build a 1121 qubit system. What does this technology mean? - The Hindu - September 24th, 2020
- Extending the life of the qubit | Temple Now - Temple University News - September 24th, 2020
- OSTP, NSF, DoE, and IBM make major push to strengthen research in AI and quantum - BlackEngineer.com - September 24th, 2020
- Heres why quantum computing is a cat among the pigeons - BusinessLine - September 12th, 2020
- The Hyperion-insideHPC Interviews: ORNL Distinguished Scientist Travis Humble on Coupling Classical and Quantum Computing - insideHPC - September 12th, 2020
- Oxford Instruments Partners With The 10 Million Consortium, To Launch The First Commercial Quantum Computer In UK - AZoNano - September 10th, 2020
- Combinations of new technologies will upend finance - The Australian Financial Review - September 10th, 2020
- Quantum Computing Market Analysis by Growth, segmentation, performance, Competitive Strategies and Forecast to 2026 - Galus Australis - September 10th, 2020
- The Quantum Dream: Are We There Yet? - Toolbox - September 7th, 2020
- 17 extremely useful productivity tips from this years 40 Under 40 - Yahoo Finance UK - September 7th, 2020
- How Amazon Quietly Powers The Internet - Forbes - September 7th, 2020
- New evidence that the quantum world is even stranger than we thought - Purdue News Service - September 4th, 2020
- How Andersen Cheng plans to defend against the quantum computer - The Independent - September 4th, 2020
- Quantum computer to be hosted in Abingdon - ClickLancashire - September 4th, 2020
- Assistant director of NSFs Computer and Information Science and Engineering to give virtual talk Sept. 11 - Vanderbilt University News - September 4th, 2020
- Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing,... - August 29th, 2020
- I confess, I'm scared of the next generation of supercomputers - TechRadar - August 29th, 2020
- Q-NEXT collaboration awarded National Quantum Initiative funding - University of Wisconsin-Madison - August 29th, 2020
- UArizona Scientists to Build What Einstein Wrote off as Science Fiction - UANews - August 29th, 2020
- Quantum leap? US plans for unhackable internet may not fructify within a decade, but India is far behind - The Financial Express - August 4th, 2020
- Google distinguished scientist Hartmut Neven is one of Fast Company's - Fast Company - August 4th, 2020
- Quantum physicists say time travelers don't have to worry about the butterfly effect - The Next Web - August 2nd, 2020
- Week in review: BootHole, RCEs in industrial VPNs, the cybersecurity profession crisis - Help Net Security - August 2nd, 2020
- New UC-led institute awarded $25M to explore potential of quantum computing and train a future workforce - University of California - July 31st, 2020
- The future of encryption: Getting ready for the quantum computer attack - TechRepublic - July 31st, 2020
- IBM and University of Tokyo team up for Quantum Innovation Initiative Consortium - SmartPlanet.com - July 31st, 2020
- 'Butterfly effect' is wrong and reality can 'heal itself', quantum scientists find in time travel experiment - The Independent - July 31st, 2020
- Research: the butterfly effect does not exist in the quantum model - FREE NEWS - July 31st, 2020
- Solving problems by working together: Could quantum computing hold the key to Covid-19? - ITProPortal - July 2nd, 2020
- Spain Introduces the World's First Quantum Phase Battery - News - All About Circuits - July 2nd, 2020
- Professor tackles one more mystery about quantum mechanics and times flow - GeekWire - July 2nd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through June 27) - Singularity Hub - June 29th, 2020
- Kudos: Read about faculty, staff and student awards, appointments and achievements - Vanderbilt University News - June 29th, 2020
- This Is the First Universal Language for Quantum Computers - Popular Mechanics - June 21st, 2020
- Universal Quantum raises $4.5 million to build a large-scale quantum computer - VentureBeat - June 17th, 2020
- Ethereum (ETH) Might Not have Quantum Resistance on its Roadmap, the QRL Team Reveals - Crowdfund Insider - June 17th, 2020
- Craig Knoblock Named Michael Keston Executive Director of the USC Information Sciences Institute - USC Viterbi School of Engineering - June 17th, 2020
- European quantum computing startup takes its funding to 32M with fresh raise - TechCrunch - June 11th, 2020
- SKT to expand use of new quantum-powered security solutions - The Korea Herald - June 11th, 2020
- Archer looks to commercialisation future with graphene-based biosensor tech - ZDNet - June 11th, 2020
- Dear NASA, please put a particle collider on the Moon - The Next Web - June 11th, 2020
- Top 10 emerging technologies of 2020: Winners and losers - TechRepublic - June 11th, 2020
- When Will Quantum Computing Come to Mainstream? - Analytics Insight - June 8th, 2020
- University announces 2020 winners of Quantrell and Graduate Teaching Awards - UChicago News - June 8th, 2020
- Physicists Found a Way to Save Schrdingers Cat - Dual Dove - June 8th, 2020
- Physicists hunt for room-temperature superconductors that could revolutionize the world's energy system - The Conversation US - June 3rd, 2020
- Covid 19 Pandemic: Quantum Computing Technologies Market 2020, Share, Growth, Trends And Forecast To 2025 - 3rd Watch News - May 24th, 2020
- Molecular dynamics used to simulate 100 million atoms | Opinion - Chemistry World - May 23rd, 2020
- Highest-performing quantum simulator IN THE WORLD delivered to Japan - TechGeek - May 18th, 2020
- Light, fantastic: the path ahead for faster, smaller computer processors - News - The University of Sydney - May 18th, 2020
- Wiring the quantum computer of the future - Space Daily - April 29th, 2020
- Technologies That You Can Explore Other Than Data Science During Lockdown - Analytics India Magazine - April 29th, 2020
- Will Quantum Computing Really Change The World? Facts And Myths - Analytics India Magazine - April 23rd, 2020
- Google's top quantum computing brain may or may not have quit - Fudzilla - April 23rd, 2020
- On the Heels of a Light Beam - Scientific American - April 23rd, 2020
- Advanced Encryption Standard (AES): What It Is and How It Works - Hashed Out by The SSL Store - Hashed Out by The SSL Store - April 23rd, 2020
- Google's Head of Quantum Computing Hardware Resigns - WIRED - April 21st, 2020
- COVID-19: Quantum computing could someday find cures for coronaviruses and other diseases - TechRepublic - April 21st, 2020
- The future of quantum computing in the cloud - TechTarget - April 21st, 2020
- Quantum computer chips demonstrated at the highest temperatures ever - New Scientist News - April 17th, 2020
- Alex Garland on 'Devs,' free will and quantum computing - Engadget - April 14th, 2020
- RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register - April 12th, 2020
- Quantum computing: When to expect the next major leap - TechRepublic - April 12th, 2020
- Cambridge Quantum Computing Performs the World's First Quantum Natural Language Processing Experiment - Quantaneo, the Quantum Computing Source - April 12th, 2020

## Recent Comments