by YK Sugi

Hi everyone!

The other day, I visited D-Wave Systems in Vancouver, Canada. Its a company that makes cutting-edge quantum computers.

I got to learn a lot about quantum computers there, so Id like to share some of what I learned there with you in this article.

The goal of this article is to give you an accurate intuition of what a quantum computer is using a simple example.

This article will not require you to have prior knowledge of either quantum physics or computer science to be able to understand it.

Okay, lets get started.

Edit (Feb 26, 2019): I recently published a video about the same topic on my YouTube channel. I would recommend watching it (click here) before or after reading this article because I have added some additional, more nuanced arguments in the video.

Here is a one-sentence summary of what a quantum computer is:

There is a lot to unpack in this sentence, so let me walk you through what it is exactly using a simple example.

To explain what a quantum computer is, Ill need to first explain a little bit about regular (non-quantum) computers.

Now, a regular computer stores information in a series of 0s and 1s.

Different kinds of information, such as numbers, text, and images can be represented this way.

Each unit in this series of 0s and 1s is called a bit. So, a bit can be set to either 0 or 1.

A quantum computer does not use bits to store information. Instead, it uses something called qubits.

Each qubit can not only be set to 1 or 0, but it can also be set to 1 and 0. But what does that mean exactly?

Let me explain this with a simple example. This is going to be a somewhat artificial example. But its still going to be helpful in understanding how quantum computers work.

Now, suppose youre running a travel agency, and you need to move a group of people from one location to another.

To keep this simple, lets say that you need to move only 3 people for now Alice, Becky, and Chris.

And suppose that you have booked 2 taxis for this purpose, and you want to figure out who gets into which taxi.

Also, suppose here that youre given information about whos friends with who, and whos enemies with who.

Here, lets say that:

And suppose that your goal here is to divide this group of 3 people into the two taxis to achieve the following two objectives:

Okay, so this is the basic premise of this problem. Lets first think about how we would solve this problem using a regular computer.

To solve this problem with a regular, non-quantum computer, youll need first to figure out how to store the relevant information with bits.

Lets label the two taxis Taxi #1 and Taxi #0.

Then, you can represent who gets into which car with 3 bits.

For example, we can set the three bits to 0, 0, and 1 to represent:

Since there are two choices for each person, there are 2*2*2 = 8 ways to divide this group of people into two cars.

Heres a list of all possible configurations:

A | B | C0 | 0 | 00 | 0 | 10 | 1 | 00 | 1 | 11 | 0 | 01 | 0 | 11 | 1 | 01 | 1 | 1

Using 3 bits, you can represent any one of these combinations.

Now, using a regular computer, how would we determine which configuration is the best solution?

To do this, lets define how we can compute the score for each configuration. This score will represent the extent to which each solution achieves the two objectives I mentioned earlier:

Lets simply define our score as follows:

(the score of a given configuration) = (# friend pairs sharing the same car) - (# enemy pairs sharing the same car)

For example, suppose that Alice, Becky, and Chris all get into Taxi #1. With three bits, this can be expressed as 111.

In this case, there is only one friend pair sharing the same car Alice and Becky.

However, there are two enemy pairs sharing the same car Alice and Chris, and Becky and Chris.

So, the total score of this configuration is 1-2 = -1.

With all of this setup, we can finally go about solving this problem.

With a regular computer, to find the best configuration, youll need to essentially go through all configurations to see which one achieves the highest score.

So, you can think about constructing a table like this:

A | B | C | Score0 | 0 | 0 | -10 | 0 | 1 | 1 <- one of the best solutions0 | 1 | 0 | -10 | 1 | 1 | -11 | 0 | 0 | -11 | 0 | 1 | -11 | 1 | 0 | 1 <- the other best solution1 | 1 | 1 | -1

As you can see, there are two correct solutions here 001 and 110, both achieving the score of 1.

This problem is fairly simple. It quickly becomes too difficult to solve with a regular computer as we increase the number of people in this problem.

We saw that with 3 people, we need to go through 8 possible configurations.

What if there are 4 people? In that case, well need to go through 2*2*2*2 = 16 configurations.

With n people, well need to go through (2 to the power of n) configurations to find the best solution.

So, if there are 100 people, well need to go through:

This is simply impossible to solve with a regular computer.

How would we go about solving this problem with a quantum computer?

To think about that, lets go back to the case of dividing 3 people into two taxis.

As we saw earlier, there were 8 possible solutions to this problem:

A | B | C0 | 0 | 00 | 0 | 10 | 1 | 00 | 1 | 11 | 0 | 01 | 0 | 11 | 1 | 01 | 1 | 1

With a regular computer, using 3 bits, we were able to represent only one of these solutions at a time for example, 001.

However, with a quantum computer, using 3 qubits, we can represent all 8 of these solutions at the same time.

There are debates as to what it means exactly, but heres the way I think about it.

First, examine the first qubit out of these 3 qubits. When you set it to both 0 and 1, its sort of like creating two parallel worlds. (Yes, its strange, but just follow along here.)

In one of those parallel worlds, the qubit is set to 0. In the other one, its set to 1.

Now, what if you set the second qubit to 0 and 1, too? Then, its sort of like creating 4 parallel worlds.

In the first world, the two qubits are set to 00. In the second one, they are 01. In the third one, they are 10. In the fourth one, they are 11.

Similarly, if you set all three qubits to both 0 and 1, youd be creating 8 parallel worlds 000, 001, 010, 011, 100, 101, 110, and 111.

This is a strange way to think, but it is one of the correct ways to interpret how the qubits behave in the real world.

Now, when you apply some sort of computation on these three qubits, you are actually applying the same computation in all of those 8 parallel worlds at the same time.

So, instead of going through each of those potential solutions sequentially, we can compute the scores of all solutions at the same time.

With this particular example, in theory, your quantum computer would be able to find one of the best solutions in a few milliseconds. Again, thats 001 or 110 as we saw earlier:

A | B | C | Score0 | 0 | 0 | -10 | 0 | 1 | 1 <- one of the best solutions0 | 1 | 0 | -10 | 1 | 1 | -11 | 0 | 0 | -11 | 0 | 1 | -11 | 1 | 0 | 1 <- the other best solution1 | 1 | 1 | -1

In reality, to solve this problem, you would need to give your quantum computer two things:

Given these two things, your quantum computer will spit out one of the best solutions in a few milliseconds. In this case, thats 001 or 110 with a score of 1.

Now, in theory, a quantum computer is able to find one of the best solutions every time it runs.

However, in reality, there are errors when running a quantum computer. So, instead of finding the best solution, it might find the second-best solution, the third best solution, and so on.

These errors become more prominent as the problem becomes more and more complex.

So, in practice, you will probably want to run the same operation on a quantum computer dozens of times or hundreds of times. Then pick the best result out of the many results you get.

Even with the errors I mentioned, the quantum computer does not have the same scaling issue a regular computer suffers from.

When there are 3 people we need to divide into two cars, the number of operations we need to perform on a quantum computer is 1. This is because a quantum computer computes the score of all configurations at the same time.

When there are 4 people, the number of operations is still 1.

When there are 100 people, the number of operations is still 1. With a single operation, a quantum computer computes the scores of all 2 ~= 10 = one million million million million million configurations at the same time.

As I mentioned earlier, in practice, its probably best to run your quantum computer dozens of times or hundreds of times and pick the best result out of the many results you get.

However, its still much better than running the same problem on a regular computer and having to repeat the same type of computation one million million million million million times.

Special thanks to everyone at D-Wave Systems for patiently explaining all of this to me.

D-Wave recently launched a cloud environment for interacting with a quantum computer.

If youre a developer and would like actually to try using a quantum computer, its probably the easiest way to do so.

Its called Leap, and its at https://cloud.dwavesys.com/leap. You can use it for free to solve thousands of problems, and they also have easy-to-follow tutorials on getting started with quantum computers once you sign up.

Footnote:

Excerpt from:

What is a quantum computer? Explained with a simple example.

- Solving problems by working together: Could quantum computing hold the key to Covid-19? - ITProPortal - July 2nd, 2020
- Spain Introduces the World's First Quantum Phase Battery - News - All About Circuits - July 2nd, 2020
- Professor tackles one more mystery about quantum mechanics and times flow - GeekWire - July 2nd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through June 27) - Singularity Hub - June 29th, 2020
- Kudos: Read about faculty, staff and student awards, appointments and achievements - Vanderbilt University News - June 29th, 2020
- This Is the First Universal Language for Quantum Computers - Popular Mechanics - June 21st, 2020
- Universal Quantum raises $4.5 million to build a large-scale quantum computer - VentureBeat - June 17th, 2020
- Ethereum (ETH) Might Not have Quantum Resistance on its Roadmap, the QRL Team Reveals - Crowdfund Insider - June 17th, 2020
- Craig Knoblock Named Michael Keston Executive Director of the USC Information Sciences Institute - USC Viterbi School of Engineering - June 17th, 2020
- European quantum computing startup takes its funding to 32M with fresh raise - TechCrunch - June 11th, 2020
- SKT to expand use of new quantum-powered security solutions - The Korea Herald - June 11th, 2020
- Archer looks to commercialisation future with graphene-based biosensor tech - ZDNet - June 11th, 2020
- Dear NASA, please put a particle collider on the Moon - The Next Web - June 11th, 2020
- Top 10 emerging technologies of 2020: Winners and losers - TechRepublic - June 11th, 2020
- When Will Quantum Computing Come to Mainstream? - Analytics Insight - June 8th, 2020
- University announces 2020 winners of Quantrell and Graduate Teaching Awards - UChicago News - June 8th, 2020
- Physicists Found a Way to Save Schrdingers Cat - Dual Dove - June 8th, 2020
- Physicists hunt for room-temperature superconductors that could revolutionize the world's energy system - The Conversation US - June 3rd, 2020
- Covid 19 Pandemic: Quantum Computing Technologies Market 2020, Share, Growth, Trends And Forecast To 2025 - 3rd Watch News - May 24th, 2020
- Molecular dynamics used to simulate 100 million atoms | Opinion - Chemistry World - May 23rd, 2020
- Highest-performing quantum simulator IN THE WORLD delivered to Japan - TechGeek - May 18th, 2020
- Light, fantastic: the path ahead for faster, smaller computer processors - News - The University of Sydney - May 18th, 2020
- Wiring the quantum computer of the future - Space Daily - April 29th, 2020
- Technologies That You Can Explore Other Than Data Science During Lockdown - Analytics India Magazine - April 29th, 2020
- Will Quantum Computing Really Change The World? Facts And Myths - Analytics India Magazine - April 23rd, 2020
- Google's top quantum computing brain may or may not have quit - Fudzilla - April 23rd, 2020
- On the Heels of a Light Beam - Scientific American - April 23rd, 2020
- Advanced Encryption Standard (AES): What It Is and How It Works - Hashed Out by The SSL Store - Hashed Out by The SSL Store - April 23rd, 2020
- Google's Head of Quantum Computing Hardware Resigns - WIRED - April 21st, 2020
- COVID-19: Quantum computing could someday find cures for coronaviruses and other diseases - TechRepublic - April 21st, 2020
- The future of quantum computing in the cloud - TechTarget - April 21st, 2020
- Quantum computer chips demonstrated at the highest temperatures ever - New Scientist News - April 17th, 2020
- Alex Garland on 'Devs,' free will and quantum computing - Engadget - April 14th, 2020
- RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register - April 12th, 2020
- Quantum computing: When to expect the next major leap - TechRepublic - April 12th, 2020
- Cambridge Quantum Computing Performs the World's First Quantum Natural Language Processing Experiment - Quantaneo, the Quantum Computing Source - April 12th, 2020
- The Well-matched Combo of Quantum Computing and Machine Learning - Analytics Insight - March 23rd, 2020
- Picking up the quantum technology baton - The Hindu - March 23rd, 2020
- Research by University of Chicago PhD Student and EPiQC Wins IBM Q Best Paper - HPCwire - March 23rd, 2020
- Honeywell Achieves Breakthrough That Will Enable The Worlds Most Powerful Quantum Computer #47655 - New Kerala - March 23rd, 2020
- Is time broken? Physicists filmed a quantum measurement but the 'moment' was blurry - The Next Web - March 5th, 2020
- What Is Quantum Computing? The Next Era of Computational ... - March 3rd, 2020
- Honeywell says it will soon launch the worlds most powerful quantum computer - TechCrunch - March 3rd, 2020
- Majority of Promising AI Startups Are Still Based in the US - Transport Topics Online - March 3rd, 2020
- 10 Revolutionary Technologies To Lookout For In 2020 - Fossbytes - March 3rd, 2020
- Quantum researchers able to split one photon into three - Space Daily - March 3rd, 2020
- Physicists Captured The Moment That An Atom Enters Quantum Measurement - Somag News - February 29th, 2020
- This Week's Awesome Tech Stories From Around the Web (Through February 29) - Singularity Hub - February 29th, 2020
- IC Breakthroughs: Energy Harvesting, Quantum Computing, and a 96-Core Processor in Six Chiplets - News - All About Circuits - February 29th, 2020
- Top 10 Strategic Technology Breakthroughs That Will Transform Our Lives - Analytics Insight - February 29th, 2020
- New Intel chip could accelerate the advent of quantum computing - RedShark News - February 28th, 2020
- Particle accelerator technology could solve one of the most vexing problems in building quantum computers - Fermi National Accelerator Laboratory - February 28th, 2020
- Top 10 breakthrough technologies of 2020 - TechRepublic - February 28th, 2020
- 21st ISQED Conference to Commence With Focus on Quantum Computing, Security, and AI/ML & Electronic Design - PRNewswire - February 25th, 2020
- NTT Research to Collaborate with UCLA and Georgetown on Cryptography and Blockchain - Yahoo Finance - February 25th, 2020
- Should decision makers be concerned by the threat of quantum? - Information Age - February 25th, 2020
- Keeping classified information secret in a world of quantum computing - Bulletin of the Atomic Scientists - February 11th, 2020
- A neural network that learned to predict the behavior of a quantum system - Tech Explorist - February 9th, 2020
- Deltec Bank, Bahamas A combination of Quantum Computing and Blockchain Technology Will Have a huge Impact on Banking - Press Release - Digital... - February 5th, 2020
- Could Photonic Chips Outpace the Fastest Supercomputers? - Singularity Hub - February 5th, 2020
- Google claims to have invented a quantum computer, but IBM begs to differ - The Conversation CA - January 22nd, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Quantaneo, the Quantum Computing Source - January 22nd, 2020
- U of T's Peter Wittek, who will be remembered at Feb. 3 event, on why the future is quantum - News@UofT - January 17th, 2020
- Quantum Computing Technologies Market 2019, Size, Share, Global Industry Growth, Business Statistics, Top Leaders, Competitive Landscape, Forecast To... - January 17th, 2020
- This Week In Security: Windows 10 Apocalypse, Paypal Problems, And Cablehaunt - Hackaday - January 17th, 2020
- Kitchener's Angstrom Engineering is making a quantum leap with its next-generation technology - TheRecord.com - January 17th, 2020
- Xanadu Receives $4.4M Investment from SDTC to Advance its Photonic Quantum Computing Technology - Yahoo Finance - January 16th, 2020
- The dark side of IoT, AI and quantum computing: Hacking, data breaches and existential threat - ZDNet - January 16th, 2020
- 'How can we compete with Google?': the battle to train quantum coders - The Guardian - January 16th, 2020
- IBM heads US patent list for 27th consecutive year - Technology Decisions - January 16th, 2020
- New Technique May Be Capable of Creating Qubits From Silicon Carbide Wafer - Tom's Hardware - January 14th, 2020
- The hunt for the 'angel particle' continues - Big Think - January 13th, 2020
- How to verify that quantum chips are computing correctly - MIT News - January 13th, 2020
- Googles Quantum Supremacy will mark the End of the Bitcoin in 2020 - The Coin Republic - January 13th, 2020
- Bleeding edge information technology developments - IT World Canada - January 13th, 2020
- Jeffrey Epstein scandal: MIT professor put on leave, he 'failed to inform' college that sex offender made donations - CNBC - January 10th, 2020
- The teenager that's at CES to network - Yahoo Singapore News - January 10th, 2020
- AI, ML and quantum computing to cement position in 2020: Alibabas Jeff Zhang - Tech Observer - January 8th, 2020
- Perspective: End Of An Era | WNIJ and WNIU - WNIJ and WNIU - January 8th, 2020
- Volkswagen carried out the world's first pilot project for traffic optimization with a quantum computer - Quantaneo, the Quantum Computing Source - January 6th, 2020

## Recent Comments