The science and tech world has been abuzz about quantum computers for years, but the devices are not yet affecting our daily lives. Quantum systems could seamlessly encrypt data, help us make sense of the huge amount of data weve already collected, and solve complex problems that even the most powerful supercomputers cannot such as medical diagnostics and weather prediction.

That nebulous quantum future became one step closer this November, when top-tier journal Nature published two papers that showed some of the most advanced quantum systems yet.

If you still dont understand what a quantum computer is, what it does, or what it could do for you, never fear. Futurism recently spoke with Mikhail Lukin, a physics professor at Harvard University and the senior author ofone of those papers, about the current state of quantum computing, when we might have quantum technology on our phones or our desks, and what it will take for that to happen.

This interview has been slightly edited for clarity and brevity.

Futurism: First, can you give me a simple explanation for how quantum computing works?

Mikhail Lukin: Lets start with how classical computers work. In classical computers, you formulate any problem you want to solve in the form of some input, which is basically a stream of 0s and 1s. When you want to do some calculation, you basically create a certain set of rules depending on how this stream should actually move. Thats the process of calculation addition, multiplication, whatever.

But weve known for more than 100 years that our microscopic world is fundamentally quantum mechanical. And in quantum mechanics, you can have systems. Your computer, for instance, or your chair can be placed in two different states at once thats the idea of quantum superpositions. In other words, your computer can be simultaneously both in Boston and in New York. So this quantum superposition, even though it sounds very weird, is allowed by the laws of quantum mechanics. On a large scale, like the example that I gave, it is clearly very strange. But in the microscopic world, like with a single atom, creating this kind of superposition state is actually quite common. So by doing these scientific experiments, scientists proved that a single atom is in two different states at once.

The idea of quantum computers is to basically make use of these rules of quantum mechanics to process information. Its pretty easy to understand how this can be so powerful. In classical computers, you give me a certain input, I put it in my computer, I give you an output. But if our hardware was quantum mechanical, rather than just sequentially providing some input and reading out the answers, I could prepare the computer register in the quantum superpositions of many different kind of inputs.

This means that if I then take this superposition state and process it using the laws of quantum mechanics, I can process many, many inputs at once. It could be potentially an exponential speedup, compared to the classical programs.

F: What does a quantum computer look like?

ML: If you were to walk into a room with our quantum machine in it you would see a vacuum cell or tube and a bunch of lasers which shine into it. Inside we have a very low density of a certain atom. We use lasers to slow down the atomic motion very close to absolute zero, which is called laser cooling.

F: So how do you program the thing?

ML:. To program a quantum computer, we shine a hundred tightly-focused laser beams into this vacuum chamber. Each of these laser beams acts as a optical tweezer, grabbing one atom or not. We have these atom traps, each of which is either loaded or empty. We then take a picture of these atoms in these traps, and we figure out which traps are full and which are empty. Then we rearrange the trap containing single atoms in any pattern that we wish. This desired arrangement of single atoms, each individually held in and easily controlled, are positioned basically at will.

Positioning these atoms is one way that we can program it. To actually control the qubit, we gently, carefully, push the atoms from their lowest energy state into a higher energy state. We do this with carefully chosen laser beams that shoot to one specific transition. Their frequency is very tightly controlled. In this excited state the atom actually becomes very big and, because of this atom size, the atoms start interacting or in other words talking to each other. By choosing the state to which we excite the atoms and choosing their arrangements and positions, we can then program the interaction in a highly controllable way.

F: What kinds of applications would a quantum computer be most useful for?

ML: To be honest, we really dont know the answer. Its generally believed that quantum computers will not necessarily help for all computational tasks. But there are problems that are mathematically hard for even the best classical computers. They usually involve some complex problems, such as problems involving complex optimizations in which you try to satisfy a number of contradictory constraints.

Suppose you want to give some kind of collective present to a group of people, each of which has its own niche. Some of the niches might be contradictory. So what happens is, if you solve this problem classically, you have to check each pair or triplet of people to make sure that at least their niche is satisfied. The complexity of this problem grows in size very, very rapidly because the number of classical combinations you need to check is exponential. There is some belief that for some of these problems, quantum computers can offer some advantage.

Another very well-known example is factoring. If you have a small number, like 15, its clear that the factors are 3 and 5, but this is the kind of problem that very quickly becomes complicated as the number grows. If you have a large number that is a product of two large factors, classically there is pretty much no better way to find what these factors are than just trying numbers from one, two, three, and so on. But it turns out that a quantum algorithm exists, called Shors algorithm, that can find the factors exponentially faster than the best known classical algorithms. If you can do something exponentially faster than using the alternative approach, then its a big gain.

F: It sounds like your mission, and that of others in your field, is to help us advance and understand this technology, but the applications are sort of secondary and will come when you have the tools. Does that seem about right?

ML: I will answer your question with an analogy. When classical computers were first developed, they were mostly used to do scientific calculations, numerical experiments to understand how complex physical systems behave. Right now, quantum machines are at this stage of development. They already allow us to study complex quantum physical phenomena. They are useful for scientific purposes, and scientists are already doing it now.

In fact, one significance of our papers [published in Nature] is that we have already built machines, which are large enough, and complex enough, and quantum enough to do scientific experiments that are very difficult to impossible to do on even the best possible classical computers essentially supercomputers. In our work, we already used our machine to make a scientific discovery, which had not been made up until now in part because its very difficult for classical computers to model these systems. In some ways, we are now crossing the threshold where quantum machines are becoming useful, at least for scientific purposes.

When classical computers were being developed, people had some ideas of which algorithms to run on them. But actually it turned out that when the first computers were built, people were able to start experimenting with them and discovered many more practically efficient, useful algorithms. In other words, thats really when they discovered what these computers can actually be good for.

Thats why Im saying that we really dont know now the tasks for which quantum computers will be particularly useful. The only way to find these tasks is to build large, functional, quantum machines to try these things out. Thats an important goal, and I should say that we are entering this phase now. Were very, very close to a stage when we can start experimenting with quantum algorithms on large scale machines

F: Tell me a little bit about your Nature paper. What actually is the advance here? And how close are we to being able to start discovering the algorithms that could work on quantum computers?

ML: So first lets talk about how one could quantify quantum machines. It can be done along three different axes. On one axis is the scale how many qubits [a quantum bit, the unit that makes up the basis of quantum computer the way bits do in classical computing] it is. More is better. Another axis is the degree of quantum-ness, that is, how coherent these systems are. So eventually, the way to quantify it is that if you have a certain number of qubits, and you perform some calculations with that, whats the probability that this calculation is error-free?

If you have a single qubit, you have a small chance to make an error. Once you have a lot of them, this probability is exponentially higher. So the systems described in our paper, and also in the complementary paper, have large enough qubits and are coherent enough so that we can basically do the entire series of computations with fairly low error probability. In other words, in a finite number of tries, we can have a result that has no errors.

But this is still not the complete story. The third axis is how well you can program this machine. Basically if you can make each qubit talk with any other qubit in an arbitrary fashion, you can also encode any quantum problem into this machine. Such machines are sometimes called universal quantum computers. Our machine is not fully universal, but we demonstrate a very high degree of programmability. We can actually change the connectivity very quickly. This in the end, is what allows us to probe and to make new discoveries about these complex quantum phenomena.

F: Could a quantum computer be scaled down to the size of a phone, or something vaguely portable at some point?

ML: That is not out of the question. There are ways to package it so that it can actually become portable and potentially can be miniaturized enough maybe not to the point of a mobile phone, but perhaps a desktop computer. But that cannot be done right now.

F: Do you think, like classical computers, quantum computers will make the shift from just scientific discoveries to the average user in about 30 years?

ML: The answer is yes, but why 30 years? It could happen much sooner.

F: What has to happen between now and then? What kind of advances need to be made to get us there?

ML: I think we need to have big enough computers to start really figuring out what they can be used for. We dont know yet what quantum computers are capable of doing, so we dont know their full potential. I think the next challenge is to do that.

The next stage will be for engineering and creating machines that could be used maybe to target some specialized applications. People, including [my team], are already working on developing some smallscale quantum devices, which are designed to, for example, aide in medical diagnostics. In some of these applications, quantum systems just measure tiny electric or magnetic fields, which could allow you to do diagnostics more efficiently. I think these things are already coming, and some of these ideas are already being commercialized.

Then maybe, some more general applications could be commercialized. In practice quantum computers and classical computers will likely work hand-in-hand. In fact, most likely what would happen is that the majority of the work is done by classical computers, but some elements, the most difficult problems, can be solved by quantum machines.

There is also another field called quantum communication where you can basically transfer quantum states between distant stations. If you use quantum states to send information, you can build communication lines that are completely secure. Moreover, through these so-called quantum networks, sometimes called quantum internet, we should be able to access quantum servers remotely. That way, I can certainly imagine many directions in which quantum computers can enter everyday life, even though you dont carry it in your own pocket.

F: Whats something that you wish more people knew about quantum computers?

ML: Quantum computing and quantum technology have been in the news for some time. We scientists know that its an exciting area. Its really the frontier of the scientific research across many subfields. Over the last five to 10 years, most people assumed that the developments have been very futuristic. They assumed that it will take a long time before we create any useful quantum machines.

I think that this is just not the case. I think we are already entering the new era with tremendous potential for scientific discoveries, which might have wideranging applications for material science, chemistry really anything that involves complex physical systems. But I also feel that very soon we will start discovering what quantum computers can be useful for in a much broader scope, ranging from optimization to artificial intelligence and machine learning. I think these things are around the corner.

We dont yet know what and how quantum computers will do it, but we will find out very soon.

Continued here:

Quantum computing is going to change the world. Here's what ...

- Giant atoms enable quantum processing and communication in one - MIT News - August 4th, 2020
- Computer Scientist Don Towsley Named to Team Developing the Quantum Internet - UMass News and Media Relations - August 4th, 2020
- COVID-19 Impact on Quantum Computing Market Research, Growth, Industry Analysis, Size and Share 2025 | IBM Corporation, Google - My Kids Health - August 4th, 2020
- IBM and the University of Tokyo Unveil the Quantum Innovation Initiative Consortium to Accelerate Japan's Quantum Research and Development Leadership... - August 2nd, 2020
- Insights & Outcomes: a new spin on quantum research, and the biology of sex - Yale News - August 2nd, 2020
- This simple explainer tackles the complexity of quantum computing - Boing Boing - July 29th, 2020
- UK firm reaches final stages of the NIST quest for quantum-proof encryption algorithms - www.computing.co.uk - July 29th, 2020
- Looking Back on The First-Ever Photo of Quantum Entanglement - ScienceAlert - July 29th, 2020
- Quantum reckoning: The day when computers will break cryptography - ITWeb - July 29th, 2020
- Ripple CTO: Quantum computers will be a threat to Bitcoin and XRP - Crypto News Flash - July 29th, 2020
- The 6 Biggest Technology Trends In Accounting And Finance - Forbes - July 29th, 2020
- Ripple Executive Says Quantum Computing Will Threaten Bitcoin, XRP and Crypto Markets Heres When - The Daily Hodl - July 25th, 2020
- D-Waves quantum computing cloud comes to India - The Hindu - July 25th, 2020
- Hear how three startups are approaching quantum computing differently at TC Disrupt 2020 - TechCrunch - July 25th, 2020
- The Hyperion-insideHPC Interviews: Dr. Michael Resch Talks about the Leap from von Neumann: 'I Tell My PhD Candidates: Go for Quantum' - insideHPC - July 25th, 2020
- The Computational Limits of Deep Learning Are Closer Than You Think - Discover Magazine - July 25th, 2020
- China's newest technology stock exchange is thriving despite the pandemic - The Economist - July 25th, 2020
- Almost One-Third of Life Science Companies Set to Begin Quantum Computing Evaluation This Year - Lab Manager Magazine - July 17th, 2020
- Europe Quantum Computing Market 2020 | Scope of Current and Future Industry 2025 - Owned - July 17th, 2020
- Opinion |Dance of the synchronized quantum particles - Livemint - July 17th, 2020
- Quantum Software Market 2020: Potential Growth, Challenges, and Know the Companies List Could Potentially Benefit or Loose out From the Impact of... - July 17th, 2020
- Quantum Computing Market Brief Analysis and Application, Growth by 2026 - 3rd Watch News - July 17th, 2020
- Standard Chartered and Universities Space Research Association join forces on Quantum Computing - PRNewswire - July 13th, 2020
- The crypto-agility mandate, and how to get there - Help Net Security - July 13th, 2020
- Standard Chartered teams up with Universities Space Research Association on development of quantum computing apps - FinanceFeeds - July 13th, 2020
- How American Express is tapping the benefits of hybrid cloud - The Enterprisers Project - July 13th, 2020
- MIT's New Diamond-Based Quantum Chip Is the Largest Yet - Interesting Engineering - July 11th, 2020
- Chicago Quantum Exchange Welcomes Seven New Partners in Tech, Computing and Finance - HPCwire - July 11th, 2020
- In 1st Of Its Kind Webinar On Quantum Information And Computation In India, IIIT Hyderabad Successfully Conducts Quantum Talks 2020 - IndianWeb2.com - July 11th, 2020
- Satoshi Nakamoto Inspiration Gives Advice On Bitcoins Next Move - Forbes - July 11th, 2020
- QCI Hosts Webinar Series Featuring Optimizations that Deliver Quantum-Ready Solutions at Breakthrough Speed - Stockhouse - July 11th, 2020
- Quantum Computing Technologies Market to Witness a Pronounce Growth During 2025 - News by aeresearch - July 11th, 2020
- Topological Quantum Computing Market Growth By Manufacturers, Type And Application, Forecast To 2026 - 3rd Watch News - July 6th, 2020
- Quantum Software Market (impact of COVID-19) Growth, Overview with Detailed Analysis 2020-2026| Origin Quantum Computing Technology, D Wave, IBM,... - July 6th, 2020
- Regional Analysis and Strategies of Quantum Computing Technology Market during the Forecasted Period 2020-2030 - 3rd Watch News - July 6th, 2020
- Healthcare Shopping: The new age of consumerism - The Financial Express - July 6th, 2020
- Six things you need to learn about quantum computing in finance - eFinancialCareers - July 4th, 2020
- Cybersecurity in the quantum era - ETCIO.com - July 4th, 2020
- There's a Hidden Economic Trendline That Is Shattering the Global Trade System - IDN InDepthNews | Analysis That Matters - July 4th, 2020
- How Will The World Look Like In 2025 And The Future Of Cybersecurity - Entrepreneur - July 4th, 2020
- Better encryption for wireless privacy at the dawn of quantum computing - UC Riverside - June 30th, 2020
- Menten AIs combination of buzzword bingo brings AI and quantum computing to drug discovery - TechCrunch - June 30th, 2020
- Paper Outlines the Role of ERM in Managing Risks Related to New Technologies - Business Wire - June 30th, 2020
- Airbus CTO Grazia Vittadini: Aviation needs to tap emerging technologies, diverse talent to get climate-neutral - Verdict Medical Devices - Medical... - June 30th, 2020
- Is IT regulation in the DARQ? - IT PRO - June 30th, 2020
- Sen. Warner: 5G ORAN Bill Added to Must-Pass Legislation - Multichannel News - June 30th, 2020
- Is teleportation possible? Yes, in the quantum world - University of Rochester - June 25th, 2020
- JPMorgan Shows Its Chops in Quantum Computing. Heres Why It Matters. - Barron's - June 25th, 2020
- Physicist Chen Wang Receives DOE Early Career Award - UMass News and Media Relations - June 25th, 2020
- Teleportation Is Indeed Possible At Least in the Quantum World - SciTechDaily - June 25th, 2020
- Cambridge Innovation Capital plc: Annual results for the year ended 31 March 2020 - PharmiWeb.com - June 25th, 2020
- Docuseries takes viewers into the lives and labs of scientists - UChicago News - June 25th, 2020
- Should children be taught quantum computing and other sciences that are studied in college? - Explica - June 25th, 2020
- Canadas 5G Moment Of Truth - Forbes - June 25th, 2020
- The Inter-dependence of Quantum Computing and Robotics - Analytics Insight - June 21st, 2020
- 2 thoughts on Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- New Way to Assess the Performance of Quantum Devices - AZoQuantum - June 21st, 2020
- Quantum Computing Market 2020 Key Players, Share, Trend, Segmentation and Forecast to 2026 - Cole of Duty - June 21st, 2020
- Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- GlobalQuantum Software Market Report 2020 Sales Forecast to Grow Negatively in Western Regio post COVID 19 Impact Analysis Updated Edition Top Players... - June 21st, 2020
- Is China Threatening Americas Dominance In The Digital Space? - Forbes - June 21st, 2020
- Lockheed's ventures arm backs quantum computing and training tech firms - Washington Technology - June 18th, 2020
- Brighton scientists in the race to build quantum computer - The Argus - June 18th, 2020
- Toronto-based Association Quantum appoints Northern Hive PR - Business Up North - June 18th, 2020
- NTT Research Builds Upon its Micro Technologies and Cryptography Expertise with Distinguished New Hires - Business Wire - June 18th, 2020
- Coming out of lockdown is harder than going in - Science Business - June 18th, 2020
- Northern Hive PR rides a wave of new client wins - Business Up North - June 18th, 2020
- Global and Asia Pacific Quantum Computing Market Research Report 2020 CoronaVirus Efect on Industry and Companies, Anyon Systems, Cambridge Quantum... - June 17th, 2020
- Quantum Computing Market: Segmentation, Industry trends and Development to 2019-2029 - The Canton Independent Sentinel - June 17th, 2020
- Archer touts performing early-stage validation of quantum computing chip - ZDNet - June 16th, 2020
- Quantum computing is the next big leap - Lexology - June 16th, 2020
- Quantum Computing Market Analysis, Trends, Top Manufacturers, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty - June 16th, 2020
- The technical realities of functional quantum computers - is Googles ten-year plan for Quantum Computing viable? - Diginomica - June 13th, 2020
- Quantum Computing And The End Of Encryption - Hackaday - June 13th, 2020
- First master's thesis in Quantum Computing defended at the University of Tartu - Baltic Times - June 13th, 2020
- What's New in HPC Research: Hermione, Thermal Neutrons, Certifications & More - HPCwire - June 13th, 2020
- Preparing for the Jobs of the Future: The Coding School and MIT Physicists Are Making Quantum Computing Accessible to High School Students This Summer... - June 5th, 2020
- QCI Achieves Best-in-Class Performance with its Mukai Quantum-Ready Application Platform - Quantaneo, the Quantum Computing Source - June 5th, 2020
- India and Australia pump $12.7 million into AI, quantum computing and robotics renewing their cyber and crit - Business Insider India - June 5th, 2020
- Spain's CaixaBank Teams With IBM Services to Accelerate Cloud Transformation and Innovation in the Financial Services - AiThority - June 5th, 2020

## Recent Comments