Quantum computing just plain sounds cool. Weve all read about the massive investment in making it a reality, and its promise of breakthroughs in many industries. But all that press is usually short on what it is and how it works. Thats for a reason: Quantum computing is quite different from traditional digital computing and requires thinking about things in a non-intuitive way. Oh, and there is math. Lots of it.

This article wont make you an expert, but it should help you understand what quantum computing is, why its important, and why its so exciting. If you already have a background in quantum mechanics and grad school math, you probably dont need to read this article. You can jump straight into a book like A Gentle Introduction To Quantum Computing (Hint, gentle is a relative term). But ifyoure like most of us and dont have that background, lets do our best to demystify one of the most mystical topics in computing.

In a few short paragraphs, here are the basics that well go over in more detail in this article: Quantum computers use qubits instead of traditional bits (binary digits). Qubits are different from traditional bits because until they are read out (meaning measured), they can exist in an indeterminate state where we cant tell whether theyll be measured as a 0 or a 1. Thats because of a unique property called superposition.

Superposition makes qubits interesting, but their real superpower is entanglement. Entangled qubits can interact instantly. To make functional qubits, quantum computers have to be cooled to near absolute zero. Even when supercooled, qubits dont maintain their entangled state (coherence) for very long.

That makes programming them extra tricky. Quantum computers are programmed using sequences of logic gates of various kinds, but programs need to run quickly enough that the qubits dont lose coherence before theyre measured. For anyone who took a logic class or digital circuit design using flip-flops, quantum logic gates will seem somewhat familiar, although quantum computers themselves are essentially analog. However, the combination of superposition and entanglement make the process about a hundred times more confusing.

The ordinary bits we use in typical digital computers are either 0 or 1. You can read them whenever you want, and unless there is a flaw in the hardware, they wont change. Qubits arent like that. They have a probability of being 0 and a probability of being 1, but until you measure them, they may be in an indefinite state. That state,along with some other state information that allows for additional computational complexity, can be described as being at an arbitrary point on a sphere (of radius 1), that reflects both the probability of being measured as a 0 or 1 (which are the north and south poles).

The qubits state is a combination of the values along all three axes. This is called superposition. Some texts describe this property as being in all possible states at the same time, while others think thats somewhat misleading and that were better off sticking with the probability explanation. Either way, a quantum computer can actually do math on the qubit while it is in superposition changing the probabilities in various ways through logic gates before eventually reading out a result by measuring it. In all cases, though, once a qubit is read, it is either 1 or 0 and loses its other state information.

Qubits typically start life at 0, although they are often then moved into an indeterminate state using a Hadamard Gate, which results in a qubit that will read out as 0 half the time and 1 the other half. Other gates are available to flip the state of a qubit by varying amounts and directions both relative to the 0 and 1 axes, and also a third axis thatrepresents phase, and provides additional possibilities for representing information. The specific operations and gates available depend on the quantum computer and toolkit youre using.

Groups of independent qubits, by themselves, arent enough to create the massive breakthroughs that are promised by quantum computing. The magic really starts to happen when the quantum physics concept of entanglement is implemented. One industry expert likened qubits without entanglement as being a very expensive classical computer. Entangled qubits affect each other instantly when measured, no matter far apart they are, based on what Einstein euphemistically called spooky action at a distance. In terms of classic computing, this is a bit like having a logic gate connecting every bit in memory to every other bit.

You can start to see how powerful that might be compared with a traditional computer needing to read and write from each element of memory separately before operating on it. As a result, there are multiple large potential gains from entanglement. The first is a huge increase in the complexity of programming that can be executed, at least for certain types of problems. One thats creating a lot of excitement is the modeling of complex molecules and materials that are very difficult to simulate with classical computers. Another might be innovations in long-distance secure communications if and when it becomes possible to preserve quantum state over large distances. Programming using entanglement typically starts with the C-NOT gate, which flips the state of an entangled particle if its partner is read out as a 1. This is sort of like a traditional XOR gate, except that it only operates when a measurement is made.

Superposition and entanglement are impressive physical phenomena, but leveraging them to do computation requires a very different mindset and programming model. You cant simply throw your C code on a quantum computer and expect it to run, and certainly not to run faster. Fortunately, mathematicians and physicists are way ahead of the computer builders here, having developed clever algorithms that take advantage of quantum computers decades before the machines started to appear.

Some of the first quantum algorithms created, and honestly, some of the few useful ones Ive found that you can understand without a graduate degree in math, are for secure cryptographic key distribution. These algorithms use the property of entanglement to allow the key creator to send one of each of many pairs of qubits to the recipient. The full explanation is pretty long, but the algorithms rely on the fact that if anyone intercepts and reads one of the entangled bits en route, the companion qubit at the sender will be affected. By passing some statistics back and forth, the sender and receiver can figure out whether the key was transmitted securely, or was hacked on the way.

You may have read that quantum computers one day could break most current cryptography systems. They will be able to do that because there are some very clever algorithms designed to run on quantum computers that can solve a hard math problem, which in turn can be used to factor very large numbers. One of the most famous is Shors Factoring Algorithm. The difficulty of factoring large numbers is essential to the security of all public-private key systems which are the most commonly used today. Current quantum computers dont have nearly enough qubits to attempt the task, but various experts predict they will within the next 3-8 years. That leads to some potentially dangerous situations, such as if only governments and the super-rich had access to the ultra-secure encryption provided by quantum computers.

There are plenty of reasons quantum computers are taking a long time to develop. For starters, you need to find a way to isolate and control a physical object that implements a qubit. That also requires cooling it down to essentially zero (as in .015 degrees Kelvin, in the case of IBMs Quantum One). Even at such a low temperature, qubits are only stable (retaining coherence) for a very short time. That greatly limits the flexibility of programmers in how many operations they can perform before needing to read out a result.

Not only do programs need to be constrained, but they need to be run many times, as current qubit implementations have a high error rate. Additionally, entanglement isnt easy to implement in hardware either. In many designs, only some of the qubits are entangled, so the compiler needs to be smart enough to swap bits around as needed to help simulate a system where all the bits can potentially be entangled.

The good news is that trivial quantum computing programs are actually pretty easy to understand if a bit confusing at first. Plenty of tutorials are available that will help you write your first quantum program, as well as let you run it on a simulator, and possibly even on a real quantum computer.

One of the best places to start is with IBMs QISKit, a free quantum toolkit from IBM Q Research that includes a visual composer, a simulator, and access to an actual IBM quantum computer after you have your code running on the simulator. Rigetti Quantum Computing has also posted an easy intro application, which relies on their toolkit and can be run on their machines in the cloud.

Unfortunately, the trivial applications are just that: trivial. So simply following along with the code in each example doesnt really help you master the intricacies of more sophisticated quantum algorithms. Thats a much harder task.

Thanks to William Poole and Sue Gemmell for their thoughtful input.

Now Read:

Also, check out ourExtremeTech Explainsseries for more in-depth coverage of todays hottest tech topics.

Top image credit: IBM

View post:

How Does Quantum Computing Work? - ExtremeTech

- Bring On The Qubits: How The Quantum Computing Arms Race Affects Legal - Technology - United States - Mondaq News Alerts - September 30th, 2020
- Under the dragons thumb: Chinese heft in VPNs and Indias vulnerability in a quantum-computing era - Economic Times - September 30th, 2020
- New Study Reveals 81% of Fortune 1000 Decision-Makers Have a Quantum Computing Use-Case In Mind For The Next Three Years Quantum computing emerges as... - September 30th, 2020
- Quantum Computing Technologies Market Potential Growth, Size, Share, Demand and Analysis of Key Players Research Forecasts to 2027 - The Daily... - September 30th, 2020
- Quantum Computing in Aerospace and Defense Market Analysis, Trends, Opportunity, Size and Segment Forecasts to 2028 - Crypto Daily - September 30th, 2020
- Pentagon Is Clinging to Aging Technologies, House Panel Warns - The New York Times - September 30th, 2020
- The global silicon photonics market accounted for $520.0 million in 2019 and is expected to reach $3.07 billion by 2025 - PRNewswire - September 30th, 2020
- Are We Close To Realising A Quantum Computer? Yes And No, Quantum Style - Swarajya - September 14th, 2020
- Spin-Based Quantum Computing Breakthrough: Physicists Achieve Tunable Spin Wave Excitation - SciTechDaily - September 14th, 2020
- NSF and DOE to Advance Industries of the Future - ARC Viewpoints - September 14th, 2020
- Global Quantum Computing Market 2025 To Expect Maximum Benefit and Growth Potential During this COVID 19 Outbreak: D-Wave Systems, Google, IBM, Intel,... - September 14th, 2020
- Why quantum computing matters - Axios - August 26th, 2020
- The future of artificial intelligence and quantum computing - Military & Aerospace Electronics - August 26th, 2020
- BBVA Uncovers The Promise Of Quantum Computing For Banking And Financial Services - Forbes - August 26th, 2020
- Has the world's most powerful computer arrived? - The National - August 26th, 2020
- Giant atoms enable quantum processing and communication in one - MIT News - August 4th, 2020
- Computer Scientist Don Towsley Named to Team Developing the Quantum Internet - UMass News and Media Relations - August 4th, 2020
- COVID-19 Impact on Quantum Computing Market Research, Growth, Industry Analysis, Size and Share 2025 | IBM Corporation, Google - My Kids Health - August 4th, 2020
- IBM and the University of Tokyo Unveil the Quantum Innovation Initiative Consortium to Accelerate Japan's Quantum Research and Development Leadership... - August 2nd, 2020
- Insights & Outcomes: a new spin on quantum research, and the biology of sex - Yale News - August 2nd, 2020
- This simple explainer tackles the complexity of quantum computing - Boing Boing - July 29th, 2020
- UK firm reaches final stages of the NIST quest for quantum-proof encryption algorithms - www.computing.co.uk - July 29th, 2020
- Looking Back on The First-Ever Photo of Quantum Entanglement - ScienceAlert - July 29th, 2020
- Quantum reckoning: The day when computers will break cryptography - ITWeb - July 29th, 2020
- Ripple CTO: Quantum computers will be a threat to Bitcoin and XRP - Crypto News Flash - July 29th, 2020
- The 6 Biggest Technology Trends In Accounting And Finance - Forbes - July 29th, 2020
- Ripple Executive Says Quantum Computing Will Threaten Bitcoin, XRP and Crypto Markets Heres When - The Daily Hodl - July 25th, 2020
- D-Waves quantum computing cloud comes to India - The Hindu - July 25th, 2020
- Hear how three startups are approaching quantum computing differently at TC Disrupt 2020 - TechCrunch - July 25th, 2020
- The Hyperion-insideHPC Interviews: Dr. Michael Resch Talks about the Leap from von Neumann: 'I Tell My PhD Candidates: Go for Quantum' - insideHPC - July 25th, 2020
- The Computational Limits of Deep Learning Are Closer Than You Think - Discover Magazine - July 25th, 2020
- China's newest technology stock exchange is thriving despite the pandemic - The Economist - July 25th, 2020
- Almost One-Third of Life Science Companies Set to Begin Quantum Computing Evaluation This Year - Lab Manager Magazine - July 17th, 2020
- Europe Quantum Computing Market 2020 | Scope of Current and Future Industry 2025 - Owned - July 17th, 2020
- Opinion |Dance of the synchronized quantum particles - Livemint - July 17th, 2020
- Quantum Software Market 2020: Potential Growth, Challenges, and Know the Companies List Could Potentially Benefit or Loose out From the Impact of... - July 17th, 2020
- Quantum Computing Market Brief Analysis and Application, Growth by 2026 - 3rd Watch News - July 17th, 2020
- Standard Chartered and Universities Space Research Association join forces on Quantum Computing - PRNewswire - July 13th, 2020
- The crypto-agility mandate, and how to get there - Help Net Security - July 13th, 2020
- Standard Chartered teams up with Universities Space Research Association on development of quantum computing apps - FinanceFeeds - July 13th, 2020
- How American Express is tapping the benefits of hybrid cloud - The Enterprisers Project - July 13th, 2020
- MIT's New Diamond-Based Quantum Chip Is the Largest Yet - Interesting Engineering - July 11th, 2020
- Chicago Quantum Exchange Welcomes Seven New Partners in Tech, Computing and Finance - HPCwire - July 11th, 2020
- In 1st Of Its Kind Webinar On Quantum Information And Computation In India, IIIT Hyderabad Successfully Conducts Quantum Talks 2020 - IndianWeb2.com - July 11th, 2020
- Satoshi Nakamoto Inspiration Gives Advice On Bitcoins Next Move - Forbes - July 11th, 2020
- QCI Hosts Webinar Series Featuring Optimizations that Deliver Quantum-Ready Solutions at Breakthrough Speed - Stockhouse - July 11th, 2020
- Quantum Computing Technologies Market to Witness a Pronounce Growth During 2025 - News by aeresearch - July 11th, 2020
- Topological Quantum Computing Market Growth By Manufacturers, Type And Application, Forecast To 2026 - 3rd Watch News - July 6th, 2020
- Quantum Software Market (impact of COVID-19) Growth, Overview with Detailed Analysis 2020-2026| Origin Quantum Computing Technology, D Wave, IBM,... - July 6th, 2020
- Regional Analysis and Strategies of Quantum Computing Technology Market during the Forecasted Period 2020-2030 - 3rd Watch News - July 6th, 2020
- Healthcare Shopping: The new age of consumerism - The Financial Express - July 6th, 2020
- Six things you need to learn about quantum computing in finance - eFinancialCareers - July 4th, 2020
- Cybersecurity in the quantum era - ETCIO.com - July 4th, 2020
- There's a Hidden Economic Trendline That Is Shattering the Global Trade System - IDN InDepthNews | Analysis That Matters - July 4th, 2020
- How Will The World Look Like In 2025 And The Future Of Cybersecurity - Entrepreneur - July 4th, 2020
- Better encryption for wireless privacy at the dawn of quantum computing - UC Riverside - June 30th, 2020
- Menten AIs combination of buzzword bingo brings AI and quantum computing to drug discovery - TechCrunch - June 30th, 2020
- Paper Outlines the Role of ERM in Managing Risks Related to New Technologies - Business Wire - June 30th, 2020
- Airbus CTO Grazia Vittadini: Aviation needs to tap emerging technologies, diverse talent to get climate-neutral - Verdict Medical Devices - Medical... - June 30th, 2020
- Is IT regulation in the DARQ? - IT PRO - June 30th, 2020
- Sen. Warner: 5G ORAN Bill Added to Must-Pass Legislation - Multichannel News - June 30th, 2020
- Is teleportation possible? Yes, in the quantum world - University of Rochester - June 25th, 2020
- JPMorgan Shows Its Chops in Quantum Computing. Heres Why It Matters. - Barron's - June 25th, 2020
- Physicist Chen Wang Receives DOE Early Career Award - UMass News and Media Relations - June 25th, 2020
- Teleportation Is Indeed Possible At Least in the Quantum World - SciTechDaily - June 25th, 2020
- Cambridge Innovation Capital plc: Annual results for the year ended 31 March 2020 - PharmiWeb.com - June 25th, 2020
- Docuseries takes viewers into the lives and labs of scientists - UChicago News - June 25th, 2020
- Should children be taught quantum computing and other sciences that are studied in college? - Explica - June 25th, 2020
- Canadas 5G Moment Of Truth - Forbes - June 25th, 2020
- The Inter-dependence of Quantum Computing and Robotics - Analytics Insight - June 21st, 2020
- 2 thoughts on Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- New Way to Assess the Performance of Quantum Devices - AZoQuantum - June 21st, 2020
- Quantum Computing Market 2020 Key Players, Share, Trend, Segmentation and Forecast to 2026 - Cole of Duty - June 21st, 2020
- Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- GlobalQuantum Software Market Report 2020 Sales Forecast to Grow Negatively in Western Regio post COVID 19 Impact Analysis Updated Edition Top Players... - June 21st, 2020
- Is China Threatening Americas Dominance In The Digital Space? - Forbes - June 21st, 2020
- Lockheed's ventures arm backs quantum computing and training tech firms - Washington Technology - June 18th, 2020
- Brighton scientists in the race to build quantum computer - The Argus - June 18th, 2020
- Toronto-based Association Quantum appoints Northern Hive PR - Business Up North - June 18th, 2020
- NTT Research Builds Upon its Micro Technologies and Cryptography Expertise with Distinguished New Hires - Business Wire - June 18th, 2020

## Recent Comments