Will quantum computer simulations crack open our understanding of the biological brain?

Looking back at the history of computers, its hard to overestimate the rate at which computing power has scaled in the course of just a single human lifetime. But yet, existing classical computers have fundamental limits. If quantum computers are successfully built and eventually fully come online, they will be able to tackle certain classes of problems that elude classical computers. And they may be the computational tool needed to fully understand and simulate the brain.

As of this writing, the fastest supercomputer in the world is Japans Fugaku supercomputer, developed jointly by Riken and Fujitsu. It can perform 442 peta-floating-point operations per second.

Lets break that number down in order to arrive at an intuitive (as much as possible) grasp of what it means.

A floating-point number is a way to express, or write down, a real number - real in a mathematical sense - with a fixed amount of precision. Real numbers are all the continuous numbers from the number line. 5, -23, 7/8, and numbers like pi (3.1415926 ...) that go on forever are all real numbers. The problem is a computer, which is digital, has a hard time internally representing continuous numbers. So one way around this is to specify a limited number of digits, and then specify how big or small the actual number is by some base power. For example, the number 234 can be written as 2.34 x 102, because 2.34 x 100 equals 234. Floating point numbers specify a fixed number of significant digits the computer must store in its memory. It fixes the accuracy of the number. This is important because if you do any mathematical operation (e.g. addition, subtraction, division or multiplication) with the fixed accuracy version of a real number, small errors in your results will be generated that propagate (and can grow) throughout other calculations. But as long as the errors remain small its okay.

A floating point operation then, is any arithmetic operation between two floating-point numbers (abbreviated as FLOP). Computer scientists and engineers use the number of FLOP per second - or FLOPS - as a benchmark to compare the speed and computing power of different computers.

One petaFLOP is equivalent to 1,000,000,000,000,000 - or one quadrillion - mathematical operations. A supercomputer with a computing speed of one petaFLOPS is therefore performing one quadrillion operations per second! The Fugaku supercomputer is 442 times faster than that.

For many types of important scientific and technological problems however, even the fastest supercomputer isnt fast enough. In fact, they never will be. This is because for certain classes of problems, the number of possible combinations of solutions that need to be checked grow so fast, compared to the number of things that need to be ordered, that it becomes essentially impossible to compute and check them all.

Heres a version of a classic example. Say you have a group of people with differing political views, and you want to seat them around a table in order to maximize constructive dialogue while minimizing potential conflict. The rules you decide to use dont matter here, just that some set of rules exist. For example, maybe you always want to seat a moderate between a conservative and a liberal in order to act as a bit of a buffer.

This is what scientists and engineers call an optimization problem. How many possible combinations of seating arrangements are there? Well, if you only have two people, there are only two possible arrangements. One individual on each side of a table, and then the reverse, where the two individuals change seats. But if you have five people, the number of possible combinations jumps to 120. Ten people? Well, now youre looking at 3,628,800 different combinations. And thats just for ten people, or more generally, any ten objects. If you had 100 objects, the number of combinations is so huge that its a number with 158 digits (roughly, 9 x 10157). By comparison, there are only about 1021 stars in the observable universe.

Imagine now if you were trying to do a biophysics simulation of a protein in order to develop a new drug that had millions or billions of individual molecules interacting with each other. The number of possible combinations that would need to be computed and checked far exceed the capability of any computer that exists today. Because of how theyre designed, even the fastest supercomputer is forced to check each combination sequentially - one after another. No matter how fast a classical computer is or can be, given the literally greater than astronomical sizes of the number of combinations, many of these problems would take a practical infinity to solve. It just becomes impossible.

Related, the other problem classical computers face is its impossible to build one with sufficient memory to store each of the combinations, even if all the combinations could be computed.

The details of how a quantum computer and quantum computing algorithms work is well beyond the scope or intent of this article, but we can briefly introduce one of the key ideas in order to understand how they can overcome the combinatorial limitations of classical computers.

Classical computers represent information - all information - as numbers. And all numbers can be represented as absolute binary combinations of 1s and 0s. The 1 and 0 each represent a bit of information, the fundamental unit of classical information. Or put another way, information is represented by combinations of two possible states. For example, the number 24 in binary notation is 11000. The number 13 is 1101. You can also do all arithmetic in binary as well. This is convenient, because physically, at the very heart of classical computers is the transistor, which is just an on-off electrical switch. When its on it encodes a 1, and when its off it encodes a 0. Computers do all their math by combining billions of tiny transistors that very quickly switch back and forth as needed. Yet, as fast as this can occur, it still takes finite amounts of time, and all calculations need to be done in an appropriate ordered sequence. If the number of necessary calculations become big enough, as is the case with the combinatorial problems discussed above, you run into an unfeasible computational wall.

Quantum computers are fundamentally different. They overcome the classical limitations by being able to represent information internally not just as a function of two discrete states, but as a continuous probabilistic mixing of states. This allows quantum bits, or qubits, to have many more possible states they can represent at once, and so many more possible combinations of arrangements of objects at once. Put another way, the state space and computational space that a quantum computer has access too is much larger than that of a classical computer. And because of the wave nature of quantum mechanics and superposition (concepts we will not explore here), the internal mixing and probabilistic representation of states and information eventually converge to one dominant solution that the computer outputs. You cant actually observe that internal mixing, but you can observe the final computed output. In essence, as the number of qubits in the quantum computer increase, you can exponentially do more calculations in parallel.

The key concept here is not that quantum computers will necessarily be able to solve new and exotic classes of problems that classical computers cant - although computer scientists have discovered a theoretical class of problem that only quantum computers can solve - but rather that they will be able to solve classes of problems that are - and always will be - beyond the reach of classical computers.

And this isnt to say that quantum computers will replace classical computers. That is not likely to happen anytime in the foreseeable future. For most classes of computational problems classical computers will still work just fine and probably continue being the tool of choice. But for certain classes of problems, quantum computers will far exceed anything possible today.

Well, it depends on the scale at which the dynamics of the brain is being simulated. For sure, there has been much work within the field of computational neuroscience over many decades successfully carrying out computer simulations of the brain and brain activity. But its important to understand the scale at which any given simulation is done.

The brain is exceedingly structurally and functionally hierarchical - from genes, to molecules, cells, network of cells and networks of brain regions. Any simulation of the brain needs to begin with an appropriate mathematical model, a set of equations that capture the chosen scale being modeled that then specify a set of rules to simulate on a computer. Its like a map of a city. The mapmaker needs to make a decision about the scale of the map - how much detail to include and how much to ignore. Why? Because the structural and computational complexity of the brain is so vast and huge that its impossible given existing classical computers to carry out simulations that cut across the many scales with any significant amount of detail.

Even though a wide range of mathematical models about the molecular and cell biology and physiology exist across this huge structural and computational landscape, it is impossible to simulate with any accuracy because of the sheer size of the combinatorial space this landscape presents. It is the same class of problem as that of optimizing people with different political views around a table. But on a much larger scale.

Once again, it in part depends on how you choose to look at it. There is an exquisite amount of detail and structure to the brain across many scales of organization. Heres a more in depth article on this topic.

But if you just consider the number of cells that make up the brain and the number of connections between them as a proxy for the computational complexity - the combinatorial space - of the brain, then it is staggeringly large. In fact, it defies any intuitive grasp.

The brain is a massive network of densely interconnected cells consisting of about 171 trillion brain cells - 86 billion neurons, the main class of brain cell involved in information processing, and another 85 billion non-neuronal cells. There are approximately 10 quadrillion connections between neurons that is a 1 followed by 16 zeros. And of the 85 billion other non-neuronal cells in the brain, one major type of cell called astrocyte glial cells have the ability to both listen in and modulate neuronal signaling and information processing. Astrocytes form a massive network onto themselves, while also cross-talking with the network of neurons. So the brain actually has two distinct networks of cells. Each carrying out different physiological and communication functions, but at the same time overlapping and interacting with each other.

The computational size of the human brain in numbers.

On top of all that structure, there are billions upon billions upon billions of discrete electrical impulses, called action potentials, that act as messages between connected neurons. Astrocytes, unlike neurons, dont use electrical signals. They rely on a different form of biochemical signaling to communicate with each other and with neurons. So there is an entire other molecularly-based information signaling mechanism at play in the brain.

Somehow, in ways neuroscientists still do not fully understand, the interactions of all these electrical and chemical signals carry out all the computations that produce everything the brain is capable of.

Now pause for a moment, and think about the uncountable number of dynamic and ever changing combinations that the state of the brain can take on given this incredible complexity. Yet, it is this combinatorial space, the computations produced by trillions of signals and billions of cells in a hierarchy of networks, that result in everything your brain is capable of doing, learning, experiencing, and perceiving.

So any computer simulation of the brain is ultimately going to be very limited. At least on a classical computer.

How big and complete are the biggest simulations of the brain done to date? And how much impact have they had on scientists understanding of the brain? The answer critically depends on whats being simulated. In other words, at what scale - or scales - and with how much detail given the myriad of combinatorial processes. There certainly continue to be impressive attempts from various research groups around the world, but the amount of cells and brain being simulated, the level of detail, and the amount of time being simulated remains rather limited. This is why headlines and claims that tout ground-breaking large scale simulations of the brain can be misleading, sometimes resulting in controversy and backlash.

The challenges of doing large multi-scale simulations of the brain are significant. So in the end, the answer to how big and complete are the biggest simulations of the brain done to date and how much impact have they had on scientists understanding of the brain - is not much.

First, by their very nature, given a sufficient number of qubits quantum computers will excel at solving and optimizing very large combinatorial problems. Its an inherent consequence of the physics of quantum mechanics and the design of the computers.

Second, given the sheer size and computational complexity of the human brain, any attempt at a large multi-scale simulation with sufficient detail will have to contend with the combinatorial space of the problem.

Third, how a potential quantum computer neural simulation is set up might be able to take advantage of the physics the brain is subject to. Despite its computational power, the brain is still a physical object, and so physical constraints could be used to design and guide simulation rules (quantum computing algorithms) that are inherently combinatorial and parallelizable, thereby taking advantage of what quantum computers do best.

For example, local rules, such as the computational rules of individual neurons, can be used to calculate aspects of the emergent dynamics of networks of neurons in a decentralized way. Each neuron is doing their own thing and contributing to the larger whole, in this case the functions of the whole brain itself, all acting at the same time, and without realizing what theyre contributing too.

In the end, the goal will be to understand the emergent functions of the brain that give rise to cognitive properties. For example, large scale quantum computer simulations might discover latent (hidden) properties and states that are only observable at the whole brain scale, but not computable without a sufficient level of detail and simulation from the scales below it.

If these simulations and research are successful, one can only speculate about what as of yet unknown brain algorithms remain to be discovered and understood. Its possible that such future discoveries will have a significant impact on related topics such as artificial quantum neural networks, or on specially designed hardware that some day may challenge the boundaries of existing computational systems. For example, just published yesterday, an international team of scientists and engineers announced a computational hardware device composed of a molecular-chemical network capable of energy-efficient rapid reconfigurable states, somewhat similar to the reconfigurable nature of biological neurons.

One final comment regarding quantum computers and the brain: This discussion has focused on the potential use of future quantum computers to carry out simulations of the brain that are not currently possible. While some authors and researchers have proposed that neurons themselves might be tiny quantum computers, that is completely different and unrelated to the material here.

It may be that quantum computers will usher in a new era for neuroscience and the understanding of the brain. It may even be the only real way forward. But as of now, actually building workable quantum computers with sufficient stable qubits that outperform classical computers at even modest tasks remains a work in progress. While a handful of commercial efforts exist and have claimed various degrees of success, many difficult hardware and technological challenges remain. Some experts argue that quantum computers may in the end never be built due to technical reasons. But there is much research across the world both in academic labs and in industry attempting to overcome these engineering challenges. Neuroscientists will just have to be patient a bit longer.

Excerpt from:

Large-Scale Simulations Of The Brain May Need To Wait For Quantum Computers - Forbes

- Quantum Computing in Silicon Breaks a Crucial Threshold for the First Time - Singularity Hub - January 24th, 2022
- Microsoft Quantum Computing Executive Sees Progress After Lagging Rivals - The Information - January 24th, 2022
- US Army visits Brazil in search of technological partnership for Security and Defense areas - Dialogo-Americas.com - January 24th, 2022
- LG Electronics Joins the IBM Quantum Network - Database Trends and Applications - January 24th, 2022
- Hyperion Research Says 2021 Will Be an Exceptional Growth Year for the Global HPC Market - HPCwire - January 24th, 2022
- MSU Forms Quantum Alliance with Purdue and University of Michigan - HPCwire - January 8th, 2022
- EPFL engineers find promising way to boost computing power of quantum computers. - Science Business - January 8th, 2022
- Power Moves: Meet the newest faces on the DMV's quantum computing scene - Technical.ly DC - January 8th, 2022
- 2022 will be the year of deeptech say investors - Sifted - January 8th, 2022
- Super-Resolution Imaging of a Single Cold Atom on a Nanosecond Timescale - SciTechDaily - January 8th, 2022
- Will Innovation Make Us Better Off? - Forbes - January 8th, 2022
- The tech that will change the dialogue n 2022 - Mint - December 29th, 2021
- Is Taiwan's Five-year Quantum Computing and Talent Initiative the Wrong Strategy for the Island Nation? - OODA Loop - December 22nd, 2021
- 10 technology trends that could prove to be real game-changers - Mint - December 22nd, 2021
- Deep tech in 2022: the future is looking artificially intelligent - Information Age - December 22nd, 2021
- ixFintech Group Limited Announces Launch of ixWallet 2.0 and Plans to Launch New Asset-backed TeaCoin - Business Wire - December 22nd, 2021
- 15 Truly Unbelievable Ways Science Changed the World in 2021 - Fatherly - December 22nd, 2021
- What Is Quantum Computing? | NVIDIA Blog - December 20th, 2021
- What is Quantum Computing? | IBM - December 20th, 2021
- Quantum computing: Now Rigetti explores qutrits as well as qubits - ZDNet - December 20th, 2021
- Research Team Reaches Milestone in Quantum Computing with Error Correction - HPCwire - December 20th, 2021
- Spain-based startup Multiverse Computing receives 12.5M from EIC to bring quantum computing to finance companies - Silicon Canals - December 20th, 2021
- Smart Internet Lab will deliver Quantum Data Centre of the Future - ITP.net - December 20th, 2021
- Which emerging technologies present the greatest opportunities for business? - The Globe and Mail - December 20th, 2021
- The Quantum Moments: Top Quantum Computing Things to Recall from 2021 - Analytics Insight - December 12th, 2021
- Research Fellow, Quantum Hardware Engineer, NQCH, Centre for Quantum Technologies job with NATIONAL UNIVERSITY OF SINGAPORE | 274414 - Times Higher... - December 12th, 2021
- IOG Has Already Started Process of Making Cardano Resistant Against Quantum Attacks - CryptoGlobe - December 12th, 2021
- Microsoft and KPMG will try out quantum algorithms on real-world problems - GeekWire - December 3rd, 2021
- Honeywell Superpositions Itself in the Quantum Computing Industry With New Company Quantinuum - TECHdotMN - December 3rd, 2021
- Where does EU stand in the quantum computing race with China and US? - TechHQ - December 3rd, 2021
- Pistoia Alliance predicts a focus on the fight against antimicrobial resistance and a surge in quantum computing research for 2022 - Bio-IT World - November 25th, 2021
- Atom Computing: A Quantum Computing Startup That Believes It Can Ultimately Win The Qubit Race - Forbes - November 22nd, 2021
- Creating Dynamic Symmetry in Diamond Crystals To Improve Qubits for Quantum Computing - SciTechDaily - November 22nd, 2021
- Don Kahle: Quantum quandaries are emerging - The Register-Guard - November 22nd, 2021
- 4 key threats to the new central bank digital currencies - World Economic Forum - November 22nd, 2021
- IBM creates largest ever superconducting quantum computer - New Scientist - November 15th, 2021
- Quantum computing breakthrough may help us learn about the earliest moments of the universe - TechRadar - November 15th, 2021
- Atos and NVIDIA to Advance Climate and Healthcare Research With Exascale Computing - HPCwire - November 15th, 2021
- IBM Launches Its First Quantum Computing Certification | The Info-Tech Brief - Oakland News Now - November 15th, 2021
- Intel Marks 50th Anniversary of the Intel 4004 - HPCwire - November 15th, 2021
- QCI Qatalyst Selected by BMW Group and Amazon Web Services as a Finalist in the Quantum Computing Challenge - HPCwire - November 11th, 2021
- Will Quantum Computers Burst The Bitcoin Boom? - Forbes - November 10th, 2021
- Quantum Computing Market Research Report by Technology, by Deployment, by Offering, by End-Use, by Application, by Region - Global Forecast to 2026 -... - November 10th, 2021
- Quantum Computing Inc. to Present at the ROTH 10th Annual - GlobeNewswire - November 10th, 2021
- QCI Qatalyst Selected by BMW Group and Amazon Web Services - GlobeNewswire - November 10th, 2021
- Nvidia Declares That It Is A Full-Stack Platform - The Next Platform - November 10th, 2021
- ANET: Add These 3 Soaring Computer Hardware Stocks to Your Watchlist - StockNews.com - November 10th, 2021
- Rigetti and Oxford Instruments Participate and Sponsor The City - Marketscreener.com - November 10th, 2021
- Lost in Space-Time newsletter: Will a twisted universe save cosmology? - New Scientist - November 10th, 2021
- IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits? - HPCwire - November 6th, 2021
- QUANTUM COMPUTING INC. Management's Discussion and Analysis of Financial Condition and Results of Operations, (form 10-Q) - marketscreener.com - November 6th, 2021
- Pasqal named startup of the year by L'Usine Nouvelle - EurekAlert - November 6th, 2021
- Quantum Blockchain Technologies Plc - Update on FPGA and ASIC Development - Yahoo Finance UK - November 6th, 2021
- Quantum Xchange Joins the Hudson Institute's Quantum Alliance Initiative - PRNewswire - November 6th, 2021
- Is This the Right Time for a Cryptography Risk Assessment? - Security Boulevard - November 6th, 2021
- IBM and Raytheon Collaborating on AI, Cryptography, and Quantum Computing - Datamation - October 30th, 2021
- AWS Announces Opening of the AWS Center for Quantum Computing - HPCwire - October 30th, 2021
- China makes a quantum computer streets ahead of the US - Fudzilla - October 30th, 2021
- CyberHive's Gareth Lockwood on how quantum computing changes the rules of threat protection - TechCentral.ie - October 30th, 2021
- Amazon partners with UCLA on science hub focusing on AI and its social impact - Yahoo Finance - October 30th, 2021
- Sumitomo Corporation Quantum Transformation (QX) Project - Quantum Computer Improves Performance of Traffic Control for Flying Cars, One Step Closer... - October 20th, 2021
- 3 CQE members Receive Awards from the American Physical Society - HPCwire - October 20th, 2021
- INSIDE QUANTUM TECHNOLOGY New York, The Largest Business Quantum Technology Conference and Exhibition, Announces Focus on Quantum Safe Initiatives and... - October 20th, 2021
- Incredible Growth of Quantum Computing in Health Care Market by 2028 | D-Wave Solutions, IBM, Google EcoChunk - EcoChunk - October 20th, 2021
- IonQ and University of Maryland Researchers Demonstrate Fault-Tolerant Error Correction, Critical for Unlocking the Full Potential of Quantum... - October 12th, 2021
- Quantum computing startups pull in millions as VCs rush to get ahead of the game - The Register - October 12th, 2021
- Zapata, University of Hull researchers take quantum computing to deep space - FierceElectronics - October 12th, 2021
- IBM and Raytheon Technologies collaborate on AI, cryptography and quantum technologies - Scientific Computing World - October 12th, 2021
- How science and diplomacy inform each other - SWI swissinfo.ch - swissinfo.ch - October 12th, 2021
- Digital Wealth Management Fees to Increase Threefold to $12.6 Billion By 2026 - Yahoo Finance - October 12th, 2021
- Is Neuromorphic Computing The Answer For Autonomous Driving And Personal Robotics? - Forbes - October 12th, 2021
- IonQ is set to make its public trading debut. Here's a look at the quantum computing company's 2021 highlights - Technical.ly DC - October 2nd, 2021
- Connecting the Dots Between Material Properties and Superconducting Qubit Performance - SciTechDaily - October 2nd, 2021
- Quantum Computing in Agriculture Market to Witness Stellar CAGR During the Forecast Period 2021 -2026 - Northwest Diamond Notes - October 2nd, 2021
- What is quantum computing? - September 21st, 2021
- Why quantum computing is a security threat and how to defend against it [Q&A] - BetaNews - September 21st, 2021
- 'This Is The Beginning Of A New Industry': College Park Looks To Quantum Computing To Spark Office Growth - Bisnow - September 21st, 2021
- Prepare for the next phase of digital transformation at The Quantum Computing Summit - UKTN - UKTN (UK Technology News - September 21st, 2021
- A Simple Equation Indicates Wormholes May Be the Key to Quantum Gravity - Interesting Engineering - September 21st, 2021
- Explore Trends and COVID-19 Impact on Quantum Computing Market 2021 Research Report and Industry Forecast till 2027 | Know More Stillwater Current -... - September 21st, 2021