Illustration: Christian Gralingen

Quantum computing is all the rage. It seems like hardly a day goes by without some news outlet describing the extraordinary things this technology promises. Most commentators forget, or just gloss over, the fact that people have been working on quantum computing for decadesand without any practical results to show for it.

Weve been told that quantum computers could provide breakthroughs in many disciplines, including materials and drug discovery, the optimization of complexsystems, and artificial intelligence. Weve been assured that quantum computers will forever alter our economic, industrial, academic, and societal landscape. Weve even been told that the encryption that protects the worlds most sensitive data may soon be broken by quantum computers. It has gotten to the point where many researchers in various fields of physics feel obliged to justify whatever work they are doing by claiming that it has some relevance to quantum computing.

Meanwhile, government research agencies, academic departments (many of them funded by government agencies), and corporate laboratories are spending billions of dollars a year developing quantum computers. On Wall Street, Morgan Stanley and other financial giants expect quantum computing to mature soon and are keen to figure out how this technology can help them.

Its become something of a self-perpetuating arms race, with many organizations seemingly staying in the race if only to avoid being left behind. Some of the worlds top technical talent, at places like Google, IBM, and Microsoft, are working hard, and with lavish resources in state-of-the-art laboratories, to realize their vision of a quantum-computing future.

In light of all this, its natural to wonder: When will useful quantum computers be constructed? The most optimistic experts estimate it will take 5to 10 years. More cautious ones predict 20 to 30 years. (Similar predictions have been voiced, by the way, for the last 20 years.) I belong to a tiny minority that answers, Not in the foreseeable future. Having spent decades conducting research in quantum and condensed-matter physics, Ive developed my very pessimistic view. Its based on an understanding of the gargantuan technical challenges that would have to be overcome to ever make quantum computing work.

The idea of quantum computing first appeared nearly 40 years ago, in 1980, when the Russian-born mathematician Yuri Manin, who now works at the Max Planck Institute for Mathematics, in Bonn, first put forward the notion, albeit in a rather vague form. The concept really got on the map, though, the following year, when physicist Richard Feynman, at the California Institute of Technology, independently proposed it.

Realizing that computer simulations of quantum systems become impossible to carry out when the system under scrutiny gets too complicated, Feynman advanced the idea that the computer itself should operate in the quantum mode: Nature isnt classical, dammit, and if you want to make a simulation of nature, youd better make it quantum mechanical, and by golly its a wonderful problem, because it doesnt look so easy, he opined. A few years later, University of Oxford physicist David Deutsch formally described a general-purpose quantum computer, a quantum analogue of the universal Turing machine.

The subject did not attract much attention, though, until 1994, when mathematician Peter Shor (then at Bell Laboratories and now at MIT) proposed an algorithm for an ideal quantum computer that would allow very large numbers to be factored much faster than could be done on a conventional computer. This outstanding theoretical result triggered an explosion of interest in quantum computing. Many thousands of research papers, mostly theoretical, have since been published on the subject, and they continue to come out at an increasing rate.

The basic idea of quantum computing is to store and process information in a way that is very different from what is done in conventional computers, which are based on classical physics. Boiling down the many details, its fair to say that conventional computers operate by manipulating a large number of tiny transistors working essentially as on-off switches, which change state between cycles of the computers clock.

The state of the classical computer at the start of any given clock cycle can therefore be described by a long sequence of bits corresponding physically to the states of individual transistors. With N transistors, there are 2N possible states for the computer to be in. Computation on such a machine fundamentally consists of switching some of its transistors between their on and off states, according to a prescribed program.

In quantum computing, the classical two-state circuit element (the transistor) is replaced by a quantum element called a quantum bit, or qubit. Like the conventional bit, it also has two basic states. Although a variety of physical objects could reasonably serve as quantum bits, the simplest thing to use is the electrons internal angular momentum, or spin, which has the peculiar quantum property of having only two possible projections on any coordinate axis: +1/2 or 1/2 (in units of the Planck constant). For whatever the chosen axis, you can denote the two basic quantum states of the electrons spin as and .

Heres where things get weird. With the quantum bit, those two states arent the only ones possible. Thats because the spin state of an electron is described by a quantum-mechanical wave function. And that function involves two complex numbers, and (called quantum amplitudes), which, being complex numbers, have real parts and imaginary parts. Those complex numbers, and , each have a certain magnitude, and according to the rules of quantum mechanics, their squared magnitudes must add up to 1.

Thats because those two squared magnitudes correspond to the probabilities for the spin of the electron to be in the basic states and when you measure it. And because those are the only outcomes possible, the two associated probabilities must add up to 1. For example, if the probability of finding the electron in the state is 0.6 (60percent), then the probability of finding it in the state must be 0.4 (40 percent)nothing else would make sense.

In contrast to a classical bit, which can only be in one of its two basic states, a qubit can be in any of a continuum of possible states, as defined by the values of the quantum amplitudes and . This property is often described by the rather mystical and intimidating statement that a qubit can exist simultaneously in both of its and states.

Yes, quantum mechanics often defies intuition. But this concept shouldnt be couched in such perplexing language. Instead, think of a vector positioned in the x-y plane and canted at 45degrees to the x-axis. Somebody might say that this vector simultaneously points in both the x- and y-directions. That statement is true in some sense, but its not really a useful description. Describing a qubit as being simultaneously in both and states is, in my view, similarly unhelpful. And yet, its become almost de rigueur for journalists to describe it as such.

In a system with two qubits, there are 22 or 4 basic states, which can be written (), (), (), and (). Naturally enough, the two qubits can be described by a quantum-mechanical wave function that involves four complex numbers. In the general case of N qubits, the state of the system is described by 2N complex numbers, which are restricted by the condition that their squared magnitudes must all add up to 1.

While a conventional computer with N bits at any given moment must be in one of its 2N possible states, the state of a quantum computer with N qubits is described by the values of the 2N quantum amplitudes, which are continuous parameters (ones that can take on any value, not just a 0 or a 1). This is the origin of the supposed power of the quantum computer, but it is also the reason for its great fragility and vulnerability.

How is information processed in such a machine? Thats done by applying certain kinds of transformationsdubbed quantum gatesthat change these parameters in a precise and controlled manner.

Experts estimate that the number of qubits needed for a useful quantum computer, one that could compete with your laptop in solving certain kinds of interesting problems, is between 1,000 and 100,000. So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be at least 21,000, which is to say about 10300. Thats a very big number indeed. How big? It is much, much greater than the number of subatomic particles in the observable universe.

To repeat: A useful quantum computer needs to process a set of continuous parameters that is larger than the number of subatomic particles in the observable universe.

At this point in a description of a possible future technology, a hardheaded engineer loses interest. But lets continue. In any real-world computer, you have to consider the effects of errors. In a conventional computer, those arise when one or more transistors are switched off when they are supposed to be switched on, or vice versa. This unwanted occurrence can be dealt with using relatively simple error-correction methods, which make use of some level of redundancy built into the hardware.

In contrast, its absolutely unimaginable how to keep errors under control for the 10300 continuous parameters that must be processed by a useful quantum computer. Yet quantum-computing theorists have succeeded in convincing the general public that this is feasible. Indeed, they claim that something called the threshold theorem proves it can be done. They point out that once the error per qubit per quantum gate is below a certain value, indefinitely long quantum computation becomes possible, at a cost of substantially increasing the number of qubits needed. With those extra qubits, they argue, you can handle errors by forming logical qubits using multiple physical qubits.

How many physical qubits would be required for each logical qubit? No one really knows, but estimates typically range from about 1,000 to 100,000. So the upshot is that a useful quantum computer now needs a million or more qubits. And the number of continuous parameters defining the state of this hypothetical quantum-computing machinewhich was already more than astronomical with 1,000 qubitsnow becomes even more ludicrous.

Even without considering these impossibly large numbers, its sobering that no one has yet figured out how to combine many physical qubits into a smaller number of logical qubits that can compute something useful. And its not like this hasnt long been a key goal.

In the early 2000s, at the request of the Advanced Research and Development Activity (a funding agency of the U.S. intelligence community that is now part of Intelligence Advanced Research Projects Activity), a team of distinguished experts in quantum information established a road map for quantum computing. It had a goal for 2012 that requires on the order of 50 physical qubits and exercises multiple logical qubits through the full range of operations required for fault-tolerant [quantum computation] in order to perform a simple instance of a relevant quantum algorithm. Its now the end of 2018, and that ability has still not been demonstrated.

The huge amount of scholarly literature thats been generated about quantum-computing is notably light on experimental studies describing actual hardware. The relatively few experiments that have been reported were extremely difficult to conduct, though, and must command respect and admiration.

The goal of such proof-of-principle experiments is to show the possibility of carrying out basic quantum operations and to demonstrate some elements of the quantum algorithms that have been devised. The number of qubits used for them is below 10, usually from 3 to 5. Apparently, going from 5 qubits to 50 (the goal set by the ARDA Experts Panel for the year 2012) presents experimental difficulties that are hard to overcome. Most probably they are related to the simple fact that 25 = 32, while 250 = 1,125,899,906,842,624.

By contrast, the theory of quantum computing does not appear to meet any substantial difficulties in dealing with millions of qubits. In studies of error rates, for example, various noise models are being considered. It has been proved (under certain assumptions) that errors generated by local noise can be corrected by carefully designed and very ingenious methods, involving, among other tricks, massive parallelism, with many thousands of gates applied simultaneously to different pairs of qubits and many thousands of measurements done simultaneously, too.

A decade and a half ago, ARDAs Experts Panel noted that it has been established, under certain assumptions, that if a threshold precision per gate operation could be achieved, quantum error correction would allow a quantum computer to compute indefinitely. Here, the key words are under certain assumptions. That panel of distinguished experts did not, however, address the question of whether these assumptions could ever be satisfied.

I argue that they cant. In the physical world, continuous quantities (be they voltages or the parameters defining quantum-mechanical wave functions) can be neither measured nor manipulated exactly. That is, no continuously variable quantity can be made to have an exact value, including zero. To a mathematician, this might sound absurd, but this is the unquestionable reality of the world we live in, as any engineer knows.

Sure, discrete quantities, like the number of students in a classroom or the number of transistors in the on state, can be known exactly. Not so for quantities that vary continuously. And this fact accounts for the great difference between a conventional digital computer and the hypothetical quantum computer.

Indeed, all of the assumptions that theorists make about the preparation of qubits into a given state, the operation of the quantum gates, the reliability of the measurements, and so forth, cannot be fulfilled exactly. They can only be approached with some limited precision. So, the real question is: What precision is required? With what exactitude must, say, the square root of 2 (an irrational number that enters into many of the relevant quantum operations) be experimentally realized? Should it be approximated as 1.41 or as 1.41421356237? Or is even more precision needed?There are no clear answers to these crucial questions.

While various strategies for building quantum computers are now being explored, an approach that many people consider the most promising, initially undertaken by the Canadian company D-Wave Systems and now being pursued by IBM, Google, Microsoft, and others, is based on using quantum systems of interconnected Josephson junctions cooled to very low temperatures (down to about 10 millikelvins).

The ultimate goal is to create a universal quantum computer, one that can beat conventional computers in factoring large numbers using Shors algorithm, performing database searches by a similarly famous quantum-computing algorithm that Lov Grover developed at Bell Laboratories in 1996, and other specialized applications that are suitable for quantum computers.

On the hardware front, advanced research is under way, with a 49-qubit chip (Intel), a 50-qubit chip (IBM), and a 72-qubit chip (Google) having recently been fabricated and studied. The eventual outcome of this activity is not entirely clear, especially because these companies have not revealed the details of their work.

While I believe that such experimental research is beneficial and may lead to a better understanding of complicated quantum systems, Im skeptical that these efforts will ever result in a practical quantum computer. Such a computer would have to be able to manipulateon a microscopic level and with enormous precisiona physical system characterized by an unimaginably huge set of parameters, each of which can take on a continuous range of values. Could we ever learn to control the more than 10300 continuously variable parameters defining the quantum state of such a system?

My answer is simple. No, never.

I believe that, appearances to the contrary, the quantum computing fervor is nearing its end. Thats because a few decades is the maximum lifetime of any big bubble in technology or science. After a certain period, too many unfulfilled promises have been made, and anyone who has been following the topic starts to get annoyed by further announcements of impending breakthroughs. Whats more, by that time all the tenured faculty positions in the field are already occupied. The proponents have grown older and less zealous, while the younger generation seeks something completely new and more likely to succeed.

All these problems, as well as a few others Ive not mentioned here, raise serious doubts about the future of quantum computing. There is a tremendous gap between the rudimentary but very hard experiments that have been carried out with a few qubits and the extremely developed quantum-computing theory, which relies on manipulating thousands to millions of qubits to calculate anything useful. That gap is not likely to be closed anytime soon.

To my mind, quantum-computing researchers should still heed an admonition that IBM physicist Rolf Landauer made decades ago when the field heated up for the first time. He urged proponents of quantum computing to include in their publications a disclaimer along these lines: This scheme, like all other schemes for quantum computation, relies on speculative technology, does not in its current form take into account all possible sources of noise, unreliability and manufacturing error, and probably will not work.

Editors note: A sentence in this article originally stated that concerns over required precision were never even discussed. This sentence was changed on 30 November 2018 after some readers pointed out to the author instances in the literature that had considered these issues. The amended sentence now reads: There are no clear answers to these crucial questions.

Mikhail Dyakonov does research in theoretical physics at Charles Coulomb Laboratory at the University of Montpellier, in France. His name is attached to various physical phenomena, perhaps most famously Dyakonov surface waves.

Go here to read the rest:

The Case Against Quantum Computing - IEEE Spectrum

- Giant atoms enable quantum processing and communication in one - MIT News - August 4th, 2020
- Computer Scientist Don Towsley Named to Team Developing the Quantum Internet - UMass News and Media Relations - August 4th, 2020
- COVID-19 Impact on Quantum Computing Market Research, Growth, Industry Analysis, Size and Share 2025 | IBM Corporation, Google - My Kids Health - August 4th, 2020
- IBM and the University of Tokyo Unveil the Quantum Innovation Initiative Consortium to Accelerate Japan's Quantum Research and Development Leadership... - August 2nd, 2020
- Insights & Outcomes: a new spin on quantum research, and the biology of sex - Yale News - August 2nd, 2020
- This simple explainer tackles the complexity of quantum computing - Boing Boing - July 29th, 2020
- UK firm reaches final stages of the NIST quest for quantum-proof encryption algorithms - www.computing.co.uk - July 29th, 2020
- Looking Back on The First-Ever Photo of Quantum Entanglement - ScienceAlert - July 29th, 2020
- Quantum reckoning: The day when computers will break cryptography - ITWeb - July 29th, 2020
- Ripple CTO: Quantum computers will be a threat to Bitcoin and XRP - Crypto News Flash - July 29th, 2020
- The 6 Biggest Technology Trends In Accounting And Finance - Forbes - July 29th, 2020
- Ripple Executive Says Quantum Computing Will Threaten Bitcoin, XRP and Crypto Markets Heres When - The Daily Hodl - July 25th, 2020
- D-Waves quantum computing cloud comes to India - The Hindu - July 25th, 2020
- Hear how three startups are approaching quantum computing differently at TC Disrupt 2020 - TechCrunch - July 25th, 2020
- The Hyperion-insideHPC Interviews: Dr. Michael Resch Talks about the Leap from von Neumann: 'I Tell My PhD Candidates: Go for Quantum' - insideHPC - July 25th, 2020
- The Computational Limits of Deep Learning Are Closer Than You Think - Discover Magazine - July 25th, 2020
- China's newest technology stock exchange is thriving despite the pandemic - The Economist - July 25th, 2020
- Almost One-Third of Life Science Companies Set to Begin Quantum Computing Evaluation This Year - Lab Manager Magazine - July 17th, 2020
- Europe Quantum Computing Market 2020 | Scope of Current and Future Industry 2025 - Owned - July 17th, 2020
- Opinion |Dance of the synchronized quantum particles - Livemint - July 17th, 2020
- Quantum Software Market 2020: Potential Growth, Challenges, and Know the Companies List Could Potentially Benefit or Loose out From the Impact of... - July 17th, 2020
- Quantum Computing Market Brief Analysis and Application, Growth by 2026 - 3rd Watch News - July 17th, 2020
- Standard Chartered and Universities Space Research Association join forces on Quantum Computing - PRNewswire - July 13th, 2020
- The crypto-agility mandate, and how to get there - Help Net Security - July 13th, 2020
- Standard Chartered teams up with Universities Space Research Association on development of quantum computing apps - FinanceFeeds - July 13th, 2020
- How American Express is tapping the benefits of hybrid cloud - The Enterprisers Project - July 13th, 2020
- MIT's New Diamond-Based Quantum Chip Is the Largest Yet - Interesting Engineering - July 11th, 2020
- Chicago Quantum Exchange Welcomes Seven New Partners in Tech, Computing and Finance - HPCwire - July 11th, 2020
- In 1st Of Its Kind Webinar On Quantum Information And Computation In India, IIIT Hyderabad Successfully Conducts Quantum Talks 2020 - IndianWeb2.com - July 11th, 2020
- Satoshi Nakamoto Inspiration Gives Advice On Bitcoins Next Move - Forbes - July 11th, 2020
- QCI Hosts Webinar Series Featuring Optimizations that Deliver Quantum-Ready Solutions at Breakthrough Speed - Stockhouse - July 11th, 2020
- Quantum Computing Technologies Market to Witness a Pronounce Growth During 2025 - News by aeresearch - July 11th, 2020
- Topological Quantum Computing Market Growth By Manufacturers, Type And Application, Forecast To 2026 - 3rd Watch News - July 6th, 2020
- Quantum Software Market (impact of COVID-19) Growth, Overview with Detailed Analysis 2020-2026| Origin Quantum Computing Technology, D Wave, IBM,... - July 6th, 2020
- Regional Analysis and Strategies of Quantum Computing Technology Market during the Forecasted Period 2020-2030 - 3rd Watch News - July 6th, 2020
- Healthcare Shopping: The new age of consumerism - The Financial Express - July 6th, 2020
- Six things you need to learn about quantum computing in finance - eFinancialCareers - July 4th, 2020
- Cybersecurity in the quantum era - ETCIO.com - July 4th, 2020
- There's a Hidden Economic Trendline That Is Shattering the Global Trade System - IDN InDepthNews | Analysis That Matters - July 4th, 2020
- How Will The World Look Like In 2025 And The Future Of Cybersecurity - Entrepreneur - July 4th, 2020
- Better encryption for wireless privacy at the dawn of quantum computing - UC Riverside - June 30th, 2020
- Menten AIs combination of buzzword bingo brings AI and quantum computing to drug discovery - TechCrunch - June 30th, 2020
- Paper Outlines the Role of ERM in Managing Risks Related to New Technologies - Business Wire - June 30th, 2020
- Airbus CTO Grazia Vittadini: Aviation needs to tap emerging technologies, diverse talent to get climate-neutral - Verdict Medical Devices - Medical... - June 30th, 2020
- Is IT regulation in the DARQ? - IT PRO - June 30th, 2020
- Sen. Warner: 5G ORAN Bill Added to Must-Pass Legislation - Multichannel News - June 30th, 2020
- Is teleportation possible? Yes, in the quantum world - University of Rochester - June 25th, 2020
- JPMorgan Shows Its Chops in Quantum Computing. Heres Why It Matters. - Barron's - June 25th, 2020
- Physicist Chen Wang Receives DOE Early Career Award - UMass News and Media Relations - June 25th, 2020
- Teleportation Is Indeed Possible At Least in the Quantum World - SciTechDaily - June 25th, 2020
- Cambridge Innovation Capital plc: Annual results for the year ended 31 March 2020 - PharmiWeb.com - June 25th, 2020
- Docuseries takes viewers into the lives and labs of scientists - UChicago News - June 25th, 2020
- Should children be taught quantum computing and other sciences that are studied in college? - Explica - June 25th, 2020
- Canadas 5G Moment Of Truth - Forbes - June 25th, 2020
- The Inter-dependence of Quantum Computing and Robotics - Analytics Insight - June 21st, 2020
- 2 thoughts on Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- New Way to Assess the Performance of Quantum Devices - AZoQuantum - June 21st, 2020
- Quantum Computing Market 2020 Key Players, Share, Trend, Segmentation and Forecast to 2026 - Cole of Duty - June 21st, 2020
- Learn Quantum Computing With Spaced Repetition - Hackaday - June 21st, 2020
- GlobalQuantum Software Market Report 2020 Sales Forecast to Grow Negatively in Western Regio post COVID 19 Impact Analysis Updated Edition Top Players... - June 21st, 2020
- Is China Threatening Americas Dominance In The Digital Space? - Forbes - June 21st, 2020
- Lockheed's ventures arm backs quantum computing and training tech firms - Washington Technology - June 18th, 2020
- Brighton scientists in the race to build quantum computer - The Argus - June 18th, 2020
- Toronto-based Association Quantum appoints Northern Hive PR - Business Up North - June 18th, 2020
- NTT Research Builds Upon its Micro Technologies and Cryptography Expertise with Distinguished New Hires - Business Wire - June 18th, 2020
- Coming out of lockdown is harder than going in - Science Business - June 18th, 2020
- Northern Hive PR rides a wave of new client wins - Business Up North - June 18th, 2020
- Global and Asia Pacific Quantum Computing Market Research Report 2020 CoronaVirus Efect on Industry and Companies, Anyon Systems, Cambridge Quantum... - June 17th, 2020
- Quantum Computing Market: Segmentation, Industry trends and Development to 2019-2029 - The Canton Independent Sentinel - June 17th, 2020
- Archer touts performing early-stage validation of quantum computing chip - ZDNet - June 16th, 2020
- Quantum computing is the next big leap - Lexology - June 16th, 2020
- Quantum Computing Market Analysis, Trends, Top Manufacturers, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty - June 16th, 2020
- The technical realities of functional quantum computers - is Googles ten-year plan for Quantum Computing viable? - Diginomica - June 13th, 2020
- Quantum Computing And The End Of Encryption - Hackaday - June 13th, 2020
- First master's thesis in Quantum Computing defended at the University of Tartu - Baltic Times - June 13th, 2020
- What's New in HPC Research: Hermione, Thermal Neutrons, Certifications & More - HPCwire - June 13th, 2020
- Preparing for the Jobs of the Future: The Coding School and MIT Physicists Are Making Quantum Computing Accessible to High School Students This Summer... - June 5th, 2020
- QCI Achieves Best-in-Class Performance with its Mukai Quantum-Ready Application Platform - Quantaneo, the Quantum Computing Source - June 5th, 2020
- India and Australia pump $12.7 million into AI, quantum computing and robotics renewing their cyber and crit - Business Insider India - June 5th, 2020
- Spain's CaixaBank Teams With IBM Services to Accelerate Cloud Transformation and Innovation in the Financial Services - AiThority - June 5th, 2020

## Recent Comments