Neural network based integration of assays to assess pathogenic … – Nature.com

A vector representation of the SBRL assays that preserves species discrimination

The CDC SBRL dataset contains more than 30 different assays that include tests to determine substrate utilization and catalytic activities. Prior to the advent of DNA sequencing, these phenotypic assays were the only method available for bacterial species identification among bacteria that had similar gram staining and colony morphology. The dataset was narrowed down to focus on eight assays that had measurements listed in them for at least 80% of the strains (Table 1).

To determine if these eight assays can differentiate between various types of bacteria, a Uniform Manifold Approximation and Projection (UMAP) dimension reduction was performed to visualize the dataset (Fig.2A). Every point in the plot was a bacterial strain. The clusters that were formed based on the results from the selected eight assays belonged to bacteria with the same species names, suggesting the machine-learning approach to use the SBRL results to aggregate similar bacteria together can recapitulate the observations of human microbiologists that were made over the course of decades. The subset of assays that the computer scientists used maintained discriminative power across species.

Exploratory data analysis discovered that the SBRL dataset discriminate between different bacterial species. (A) 2D UMAP was performed on the SBRL assays followed by k-means clustering to provide the bacterial samples cluster labels. Every point in the plot is a bacterial sample. The points form groups in the UMAP, suggesting that the SBRL assays can aggregate similar bacteria together. The colors in the figure are the k-mean labels. (B) The neural network model pushes the samples from the same bacteria species closer together. An example output of two species, Vibrio parahaemolyticus and Yersinia enterocolitica, are shown in the UMAP before and after training to show clusters are refined by the model. We quantified how well the samples from the same species are clustered together before and after the training and found the normalized mutual information went from 0.65 to 0.74.

The next challenge was to develop a vector representation for the assays that would be useful to downstream machine learning models. Two solutions were investigated to address this limitation, both of which integrated the data based on species identification. The first method computed the percent of species that have a positive signal from the assay, henceforth referred to as pps (percent positive signal). PPS was considered as a positive control, as it enhanced the pathogenicity assays with the SBRL dataset but did so without the use of machine learning. The second method used a neural network embedding model (NNEM) to create bacterial species vectors using the data from the biochemical assays, henceforth referred to as vectorization. Given we only used data from eight assays and wanted to remain comparable to the PPS, we did not choose to change the dimensionality from eight. The model simply transformed the representation of the eight assays into an eight dimensional vector per species. This process involved as input the various bacterial strains and their biochemical characteristics into NNEM, then asking the model to predict the species name for each strain based on the assay. As Fig.2A showed, this should be possible by the model. The architecture of the neural network model is shown in Supplementary Fig. 3. As the model was trained to predict the species name for each strain, it created distinct vectors for each species and these new distinct vectors represented the species for downstream analyses. This learned vector representation of the SBRL biochemical assays was then integrated into our pathogenic models at the species level. In a sense, this approach combined very old data with very new algorithms to enhance the predictive power of machine learning models trained to predict pathogenic potential. We observed that after the NNEM training, the Vibrio parahaemolyticus strains and Yersinia enterocolitica strains from the initial panel of 40 formed tighter clusters (Fig.2B). We quantified how much the NNEM helped the strains that belong to the same species cluster together and found an improvement in the normalized mutual information7, a metric used to measure how well groups cluster, from 0.65 to 0.74. It should be noted that we do not claim that the NNEM can distinguish between strains perfectly, as can be seen from the normalized mutual information scores. Namely, if it was perfect, NMI=1. We instead used the vectorization to provide a species prior for our machine learning models trained only on pathogenicity assays to benefit from the additional context.

Previously, the PathEngine platform2 was developed to evaluate results of four phenotypic assays that measure pathogenic potential of a blinded set of 40 bacterial strains. These four pathogenicity assays would reasonably be expected to associated with bacterial pathogenicity due to known biological mechanisms8,9. The host immune activation assay detected activation of NF-B signal Jurkat T lymphocytes to capture presence of pathogen-associated molecular patterns (PAMPs)10,11. The AMR assay was used to discover antibiotic resistance, providing an indication whether any instance of infection could be efficiently treated12. The host adherence assay measured the ability of bacteria binding to host cells, a crucial step for pathogens to establish an infection13,14. Lastly, the host toxicity assay detected host cell death induced by the bacteria to measure the cytotoxicity of these strains15,16. The data produced by the assays were used to train ML models to predict a strains pathogenic potential from these properties. Traditionally, an expert would review the data and make a pathogenic call based on their interpretation of the data. Here, the model learns the features from each assay and then combines those features into an ensemble model that makes a pathogenic call. The model from each assay as well as the ensemble is compared to the friend or foe designation provided by NIST. Details can be found in our prior work2. The CDC SBRL dataset contains some of the same species as the bacteria used for PathEngine analysis. It was therefore hypothesized that by integrating the SBRL data with the results of the four pathogenicity phenotypic assay data, the models would have more context about each species and achieve better performance.

However, the SBRL data was not easily integrated with the results of the pathogenicity assays, since none of the actual strains tested for pathogenic potential were present in the SBRL dataset. The two representations described in the previous section were then integrated at the species level, rather than actual strains. In other words, every strain was supplemented with SBRL data that was represented through pps or vectorization. Having established two ways to integrate the SBRL biochemical data with results from the pathogenicity assays, we then performed three tests to evaluate if, and how much, the integration of the SBRL biochemical data impacted the ML results. A total of 22 bacterial strains that belong to 14 unique species were enriched with the SBRL data based on the species names. Note that we had 40 strains to use without integrating with the SBRL data but only 22 left after the integration as the remaining species were not in the SBRL dataset (Supplementary Table 1). With many fewer strains for training and testing, the accuracy of the ML models to predict pathogenic potential was expected to be lower than we had in the original PathEngine paper2, as smaller dataset sizes are generally understood to result in lower performance for this sort of model. For each assay, we tested a model with 10 cross validation that used either (1) the pathogenicity assays only, (2) the pathogenicity assay combined with the pps or, (3) the pathogenicity assay combined with the vector representation created by the NNEM. These models were used to test how well the PathEngine predictions matched the pathogenicity designations provided by NIST. We used balanced accuracy as the metric to ensure that the performance was not biased towards the majority class and henceforth refer to this metric as accuracy. The possibility that the observed prediction improvement was due entirely to the removal of less well-understood bacterial strains from the analysis was precluded by the fact that a control condition of prediction from assay without SBRL vectors, as well as with SBRL pps. Any and all improvement can thus be attributed to the vector representation we developed.

For the immune activation assay, adding the pps increased the ML accuracy up to 24% (Fig.3A,B). When the vector representation were used instead of the average values, the accuracy improved from 51 to 85% (Fig.3A,C).

Incorporation of information from SBRL enhanced the predictions of pathogenic potential of the immune activation assay up to 34%. (A) Ten-fold cross validation of an ML model with an A. immune activation assay data alone, (B) the percent positive signal (pps) and (C) NNEM of SBRL data. The results went from 51%, 75%, to 85%, balanced accuracy respectively.

For the AMR assay, pps increased the accuracy by 2% (Fig.4A,B) and the vectors improved the accuracy by 8% (Fig.4C). For the adherence assay, pps increased the accuracy by 2% (Fig.5A,B) and the vectors improved the accuracy by 7% (Fig.5C). The toxicity assay is the only exception where the performance decreased when the SBRL representations were included (Supplementary Fig. 1AC).

Incorporation of information from SBRL enhanced the predictions of pathogenic potential of the AMR assay up to 8%. (A) Ten-fold cross validation of an ML model with an A. AMR assay data alone, (B) the percent positive signal (pps) and (C) NNEM of SBRL data. The results went from 61%, 63%, to 69%, balanced accuracy respectively.

Incorporation of information from SBRL enhanced the predictions of pathogenic potential of the adherence assay up to 7%. (A) Ten-fold cross validation of an ML model with an A. adherence assay data alone, (B) the percent positive signal (pps) and (C) NNEM of SBRL data. The results went from 58%, 60%, to 65%, balanced accuracy respectively.

In order to investigate the cause for decrease in performance of the toxicity assay predictions, all the predictions were grouped into four prediction classes ( predicted as , predicted as +, + predicted as and + predicted as +). Namely, each bacterial observation was classified as either non-pathogenic () or pathogenic (+). DAPI signals from the toxicity assay showed that the host cell death induced by the bacteria can be distinguishable between different prediction classes (Supplementary Fig. 2A). After integrating the DAPI signal and the SBRL assays, we observed that the signals were masked by the presence of the SBRL assays and stayed flat throughout the time course. The assays were not as distinct between different classes as before (Supplementary Fig. 2B). Similar observations were seen when the SBRL vectors were incorporated (Supplementary Fig. 2C).

As each assay reveals different aspects of bacterial pathogenicity8,9, we combined predictions from the best performing model from each of the four assays to make a final threat assessment call. Using the models trained without using the SBRL vectors for the ensemble, we achieved accuracy of 70%, precision of 86%, recall of 73% and F1 of 79%. When the SBRL vectors were included, the ensemble performance achieved accuracy of 79%, precision of 90%, recall of 82% and F1 of 86% (Table 2). These results confirmed that adding the SBRL data provided useful context about the bacterial species for the ML models and thus improved the pathogenicity predictions.

To understand which SBRL assays were useful for the model predictions, we annotated each assay based on literature review and also quantified the assay importance by data-driven approaches. The assays are listed and annotated with their relevance for threat assessment in Table 1. For the data-driven approaches, we first examined the signals for the four prediction classes. If the as (non-pathogens predicted to be non-pathogens) and + as + (pathogens predicted to be pathogens) had dramatically different signals, it suggested that the assay is likely useful for threat assessment.

Consistent with the literature designation, MacConkey Agar (MacC) and Salmonella Shigella (SS) Agar are most relevant for threat assessment as they have the most pronounced difference between the as and + as + classes (Fig.6A). This is consistent with established microbiological understanding. Specifically, growth on MacConkey agar and SS agar are highly associated with pathogenicity, because most Enterics will grow on these agars. These assays are what have always been used to separate coliform bacteria from other similar bacteria. The re-discovery of these markers by computer scientists with no training in microbiology is a testament to the usefulness of a data-driven approach. It gives us confidence that heretofore unrecognized markers of pathogenicity will be similarly detectable. Supplementary Table 1 lists all the species used in this assay. Details of these strains and associated tags have been described previously2. The rest of the assays used were not as distinguishable as MacC and SS between the as and + as + classes but did show noticeable differences to be considered as assays useful for threat assessment as supported by the literature (Table 1). To quantify the importance, we performed drop-assay tests where we dropped one assay at a time and compared the change in the model performance to the baseline where no assay was dropped. The change in the performance quantified the importance of the assay. We found the majority of the assays have positive importance for predicting pathogenicity with the exception of lead acetate paper (TSI:H2S=paper) and oxidase tests (O) (Fig.6B).

Comparison of threat designations of the SBRL assays based on literature and the contribution determined by the models. (A) Data-driven qualitative assessment of threat relevance of the SBRL assays based on ML predictions. Non-pathogenic strains annotated as and pathogenic strains as +. The predictions belong to 4 groups: predicted to be , predicted to be +, + predicted to be and + predicted to be +. SS, MacC are the most useful assays as their predicted to be and + predicted to be + groups are differentiable. (B) The quantitative measurement of the assay contribution by determining the changes in performance when each assay is dropped one by one. If an assay is dropped and the accuracy decreases, the assay gets a positive importance score and vice versa.

Read this article:

Neural network based integration of assays to assess pathogenic ... - Nature.com

Related Posts

Comments are closed.